您好,欢迎来到聚文网。 登录 免费注册
群与图设计与动力学 (英文版)Groups and Graphs Desig

群与图设计与动力学 (英文版)Groups and Graphs Desig

  • 字数: 520
  • 出版社: 高等教育
  • 作者: 编者:(英)R·A·贝利//彼得·J·卡梅伦//吴耀琨|
  • 商品条码: 9787040650952
  • 适读年龄: 12+
  • 版次: 1
  • 开本: 16开
  • 页数: 432
  • 出版年份: 2025
  • 印次: 1
定价:¥169 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本系列共包含四门短期 课程,内容涵盖群表示、图 谱、统计最优性和符号动力 学,并着重阐释了这些领域 在线性代数中的共同根源。 它引领学生从线性代数的基 础知识逐步深入到高层次的 应用领域:有限群的表示理 论,延伸至概率模型与调和 分析;基于量子概率技术的 增长图的特征值分析;从图 的拉普拉斯特征值角度探讨 设计的统计最优性;符号动 力学,涉及矩阵稳定性与K 理论的应用。 本书为研究人员和刚入 门的博士生提供了宝贵资源 ,包含丰富的习题、注释和 参考文献。
目录
Topics in representation theory of finite groups T. Ceccherini-Silberstein, F. Scarabotti and F. ToUi 1.1 Introduction 1.2 Representation theory and harmonic analysis on finite groups 1.2.1 Representations 1.2.2 Finite Gelfand pairs 1.2.3 Spherical functions 1.2.4 Harmonic analysis of finite Gelfand pairs 1.3 Laplace operators and spectra of random walks on finite graphs 1.3.1 Finite graphs and their spectra 1.3.2 Strongly regular graphs 1.4 Association schemes 1.5 Applications of Gelfand pairs to probability 1.5.1 Markov chains 1.5.2 The Ehrenfest diffusion model 1.6 Induced representations and Mackey theory 1.6.1 Induced representations 1.6.2 Mackey theory 1.6.3 The little group method of Mackey and Wigner 1.6.4 Hecke algebras 1.6.5 Multiplicity-free triples and their spherical functions 1.7 Representation theory of GL(2,Fq) 1.7.1 Finite fields and their characters 1.7.2 Representation theory of the affine group Aff(Fq) 1.7.3 The general linear group GL(2,Fq) 1.7.4 Representations of GL(2,Fq) References 2 Quantum probability approach to spectral analysis of growing graphs N. Obata 2.1 Introduction 2.2 Basic concepts of quantum probability 2.2.1 Algebraic probability spaces 2.2.2 Spectral distributions 2.2.3 Convergence of random variables 2.2.4 Classical probability vs quantum probability 2.2.5 Notes 2.3 Quantum decomposition 2.3.1 Jacobi coefficients and interacting Fock spaces 2.3.2 Orthogonal polynomials 2.3.3 Quantum decomposition 2.3.4 How to explicitly compute/.t from ({~Z~n}, (an}) 2.3.5 Boson, fermion and free Fock spaces 2.3.6 Notes 2.4 Spectral distributions of graphs 2.4.1 Adjacency matrix as a real random variable 2.4.2 IFS structure associated to graphs 2.4.3 Homogeneous trees and Kesten distributions 2.5 Growing graphs 2.5.1 Formulation of question in general 2.5.2 Growing distance-regular graphs 2.5.3 Growing regular graphs 2.5.4 Notes

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网