您好,欢迎来到聚文网。 登录 免费注册
Fourier分析与小波分析引论(影印版)

Fourier分析与小波分析引论(影印版)

  • 字数: 630
  • 出版社: 高等教育
  • 作者: (美)马克·A.平斯基|
  • 商品条码: 9787040630978
  • 适读年龄: 12+
  • 版次: 1
  • 开本: 16开
  • 页数: 376
  • 出版年份: 2025
  • 印次: 1
定价:¥169 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书介绍了调和分析中 的一些主题,适合于低年级 研究生或高年级本科生阅读 。学习本书的必备先修知识 是实数轴上Lebesgue测度 和积分的基础知识。本书适 合对调和分析及相关知识感 兴趣的本科生、研究生以及 数学研究人员阅读参考。
目录
1 FOURIER SERIES ON THE CIRCLE 1.1 Motivation and Heuristics 1.1.1 Motivation from Physics 1.1.1.1 The Vibrating String 1.1.1.2 Heat Flow in Solids 1.1.2 Absolutely Convergent Trigonometric Series 1.1.3 *Examples of Factorial and Bessel Functions 1.1.4 Poisson Kernel Example 1.1.5 *Proof of Laplace's Method 1.1.6 *Nonabsolutely Convergent Trigonometric Series 1.2 Formulation of Fourier Series 1.2.1 Fourier Coefficients and Their Basic Properties 1.2.2 Fourier Series of Finite Measures 1.2.3 *Rates of Decay of Fourier Coefficients 1.2.3.1 Piecewise Smooth Functions 1.2.3.2 Fourier Characterization of Analytic Functions 1.2.4 Sine Integral 1.2.4.1 Other Proofs That Si(∞)=1 1.2.5 Pointwise Convergence Criteria 1.2.6 *Integration of Fourier Series 1.2.6.1 Convergence of Fourier Series of Measures 1.2.7 Riemann Localization Principle 1.2.8 Gibbs-Wilbraham Phenomenon 1.2.8.1 The General Case 1.3 Fourier Series in L2 1.3.1 Mean Square Approximation-Parseval's Theorem 1.3.2 *Application to the Isoperimetric Inequality 1.3.3 *Rates of Convergence in L2 1.3.3.1 Application to Absolutely-Convergent Fourier Series 1.4 Norm Convergence and Summability 1.4.1 Approximate Identifies 1.4.1.1 Almost-Everywhere Convergence of the Abel Means 1.4.2 Summability Matrices 1.4.3 Fejer Means of a Fourier Series 1.4.3.1 Wiener's Closure Theorem on the Circle 1.4.4 *Equidistribution Modulo One 1.4.5 *Hardy's Tauberian Theorem 1.5 Improved Trigonometric Approximation 1.5.1 Rates of Convergence in C(T) 1.5.2 Approximation with Fejer Means 1.5.3 *Jackson's Theorem 1.5.4 *Higher-Order Approximation 1.5.5 *Converse Theorems of Bemstein 1.6 Divergence of Fourier Series 1.6.1 The Example of du Bois-Reymond 1.6.2 Analysis via Lebesgue Constants 1.6.3 Divergence in the Space L1 1.7 *Appendix: Complements on Laplace's Method 1.7.0.1 First Variation on the Theme-Gaussian Approximation 1.7.0.2 Second Variation on the Theme-Improved Error Estimate 1.7.1 *Application to Bessel Functions 1.7.2 *The Local Limit Theorem of DeMoivre-Laplace 1.8 Appendix: Proof of the Uniform Boundedness Theorem 1.9 *Appendix: Higher-Order Bessel functions 1.10 Appendix: Cantor's Uniqueness Theorem 2 FOURIER TRANSFORMS ON THE LINE AND SPACE 2.1 Motivation and Heuristics 2.2 Basic Properties of the Fourier Transform 2.2.1 Riemann-Lebesgue Lemma 2.2.2 Approximate Identities and Gaussian Summability 2.2.2.1 Improved Approximate Identities for Pointwise Convergence 2.2.2.2 Application to the Fourier Transform 2.2.2.3 The n-Dimensional Poisson Kernel 2.2.3 Fourier Transforms of Tempered Distributions 2.2.4 *Characterization of the Gaussian Density 2.2.5 *Wiener's Density Theorem 2.3 Fourier Inversion in One Dimension 2.3.1 Dirichlet Kernel and Symmetric Partial Sums 2.3.2 Example of the Indicator Function 2.3.3 Gibbs-Wilbraham Phenomenon 2.3.4 Dini Convergence Theorem 2.3.4.1 Extension to Fourier's Single Integral 2.3.5 Smoothing Operations in R1-Averaging and Summability 2.3.6 Averaging and Weak Convergence 2.3.7 Cesbxo Summability 2.3.7.1 Approximation Properties of the Fejrr Kernel 2.3.8 Bernstein's Inequality 2.3.9 *One-Sided Fourier Integral Representation 2.3.9.1 Fourier Cosine Transform 2.3.9.2 Fourier Sine Transform 2.3.9.3 Generalized h-Transform 2.4 L2 Theory in Rn 2.4.1 Plancherel's Theorem 2.4.2 *Bernstein's Theorem for Fourier Transforms 2.4.3 The Uncertainty Principle 2.4.3.1 Uncertainty Principle on the Circle 2.4.4 Spectral Analysis of the Fourier Transform

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网