您好,欢迎来到聚文网。 登录 免费注册
数字信号处理(英文版)

数字信号处理(英文版)

  • 装帧: 平装
  • 出版社: 电子工业出版社
  • 作者: 周先春 著
  • 出版日期: 2024-10-01
  • 商品条码: 9787121490507
  • 版次: 1
  • 开本: 其他
  • 页数: 292
  • 出版年份: 2024
定价:¥69 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书是数字信号处理的英文版教材,介绍了数字信号处理的基础理论和基本方法,并引入了应用实例,结合实验加强学生对基本知识的理解,强化学生的工程应用能力。本书概述了数字信号、数字信号处理的基本知识,以及结合MATLAB 的信号系统分析方法,详细讨论了傅里叶变换与分析,快速傅里叶变换及其应用,数字滤波器的基本结构、基本理论及设计方法。全书分为7 章,各章之间既独立又相互联系。为了把知识点和相互联系清晰地表示出来,章首给出了思维导图。
目录
Chapter 1 Discrete-Time Systems 1 1.1 Introduction 2 1.2 Discrete-Time Signals 3 1.3 Discrete-Time Systems 6 1.3.1 Linearity 6 1.3.2 Time Invariance 6 1.3.3 Causality 6 1.3.4 Stability 9 1.4 Difference Equations and Time-Domain Response 10 1.5 Sampling of Continuous-Time Signals 14 1.5.1 Basic Principles 14 1.5.2 Sampling Theorem 15 1.6 Discrete-Time Signals and Systems with MATLAB 22 1.7 Summary 23 Exercises 23 MATLAB Exercises 27 Chapter 2 The z and Fourier Transforms 28 2.1 Introduction 29 2.2 Definition of the z Transform 30 2.3 Inverse z Transform 36 2.3.1 Computation Based on Residue Theorem 37 2.3.2 Computation Based on Partial-Fraction Expansions 40 2.3.3 Computation Based on Polynomial Division 41 2.3.4 Computation Based on Series Expansion 43 2.4 Properties of the z Transform 43 2.4.1 Linearity 43 2.4.2 Time-Reversal 44 2.4.3 Time-Shift Theorem 44 2.4.4 Multiplication by An Exponential 44 2.4.5 Complex Differentiation 45 2.4.6 Complex Conjugation 45 2.4.7 Real and Imaginary Sequences 46 2.4.8 Initial Value Theorem 46 2.4.9 Convolution Theorem 46 2.4.10 Product of Two Sequences 47 2.4.11 Parseval’s Theorem 48 2.4.12 Table of Basic z Transforms 48 2.5 Transfer Functions 48 2.6 Stability in the z Domain 51 2.7 Frequency Response 53 2.8 Fourier Transform 58 2.9 Properties of the Fourier Transform 61 2.9.1 Linearity 61 2.9.2 Time-Reversal 61 2.9.3 Symmetric and Antisymmetric Sequences 62 2.9.4 Convolution Theorem 63 2.9.5 Product of Two Sequences 63 2.9.6 Parseval’s Theorem 63 2.10 Transfer Functions with MATLAB 63 2.11 Summary 65 Exercises 65 Chapter 3 Discrete Transforms 68 3.1 Introduction 69 3.2 Discrete Fourier Transform 69 3.3 Properties of the DFT 75 3.3.1 Linearity 75 3.3.2 Time-Reversal 75 3.3.3 Time-Shift Theorem 76 3.3.4 Circular Frequency-Shift Theorem (Modulation Theorem) 77 3.3.5 Circular Convolution in Time 77 3.3.6 Correlation 78 3.3.7 Real and Imaginary Sequences 78 3.3.8 Symmetric and Antisymmetric Sequences 79 3.3.9 Parseval’s Theorem 81 3.3.10 Relationship between the DFT and the z Transform 81 3.4 Digital Filtering Using the DFT 81 3.4.1 Linear and Circular Convolutions 81 3.4.2 Overlap-and-Add Method 85 3.4.3 Overlap-and-Save Method 87 3.5 Fast Fourier Transform 90 3.6 Other Discrete Transforms 91 3.6.1 Discrete Cosine Transform 91 3.6.2 Discrete Hartley Transform 96 3.6.3 Hadamard Transform 97 3.6.4 Other Important Transforms 98 3.7 Signal Representations 98 3.8 Discrete Transforms with MATLAB 101 3.9 Summary 102 Exercises 102 Chapter 4 The Fast Fourier Transform 105 4.1 Relationship of the FFT to the DFT 106 4.2 Hints on Using FFTs in Practice 107 4.2.1 Sample Fast Enough and Long Enough 107 4.2.2 Manipulating the Time Date Prior to Transformation 108 4.2.3 Enhancing FFT Results 109 4.2.4 Interpreting FFT Results 109 4.3 Derivation of the Radix-2 FFT Algorithm 110 4.4 FFT Input/Output Data Index Bit Reversal 116 4.5 Radix-2 FFT Butterfly Structures 117 4.6 Alternate Single-Butterfly Structures 120 4.7 Fast Fourier Transform with MATLAB 123 4.8 Summary 124 Exercises 124 MATLAB Exercises 125 Chapter 5 Digital Filter Structures 126 5.1 Block Diagram Representation 127 5.1.1 Basic Building Blocks 128 5.1.2 Analysis of Block Diagrams 128 5.1.3 The Delay-Free Loop Problem 129 5.1.4 Canonic and Non-Canonic Structures 130 5.2 Equivalent Structures 131 5.3 Basic FIR Digital Filter Structures 132 5.3.1 Direct-Form Structures 132 5.3.2 Cascade-Form Structures 133 5.3.3 Polyphase Realization 133 5.3.4 Linear-Phase FIR Structures 135 5.3.5 Tapped Delay Line 136 5.4 Basic IIR Digital Filter Structures 137 5.4.1 Direct-Form Structures 137 5.4.2 Cascade Realizations 139 5.4.3 Parallel Realizations 142 5.5 Realization of Basic Structures Using MATLAB 143 5.5.1 Cascade Realization 143 5.5.2 Parallel Realization 144 5.6 Allpass Filters 146 5.6.1 Realization Based on the Multiplier Extraction Approach 146 5.6.2 Realization Based on the Two-Pair Extraction Approach 150 5.7 IIR Tapped Cascaded Lattice Structures 155 5.7.1 Realization of an All-Pole IIR Transfer Function 156 5.7.2 Gray-Markel Method 156 5.7.3 Realization Using MATLAB 159 5.8 FIR Cascaded Lattice Structures 160 5.8.1 Realization of a Pair of Arbitrary FIR Transfer Functions 160 5.8.2 Realization of a Pair of Mirror-Image FIR Transfer Functions 164 5.8.3 Realization of a Pair of Power-Complementary FIR Transfer Functions 164 5.8.4 Realization of a single FIR Transfer Function 165 5.8.5 Realization Using MATLAB 165 5.9 Summary 166 Exercises 167 MATLAB Exercises 180 Chapter 6 IIR Digital Filter Design 182 6.1 Preliminary Considerations 183 6.1.1 Digital Filter Specifications 183 6.1.2 Selection of the Filter Type 186 6.1.3 Basic Approach to IIR Digital Filter Design 187 6.1.4 IIR Digital Filter Order Estimation 187 6.1.5 Scaling the Digital Transfer Function 188 6.2 Bilinear Transformation Method of IIR Filter Design 188 6.2.1 The Bilinear Transformation 188 6.2.2 Design of Low-Order Digital Filters 191 6.3 Design of Lowpass IIR Digital Filters 194 6.4 Design of Highpass, Bandpass, and Bandstop IIR Digital Filters 196 6.5 Spectral Transformation of IIR Filters 201 6.5.1 Lowpass-to-Lowpass Transformation 202 6.5.2 Other Transformations 205 6.5.3 Spectral Transformation Using MATLAB 206 6.6 IIR Digital Filter Design Using MATLAB 208 6.7 Summary 211 Exercises 211 MATLAB Exercises 217 Chapter 7 FIR Digital Filter Design 219 7.1 Preliminary Considerations 220 7.1.1 Basic Approaches to FIR Digital Filter Design 220 7.1.2 Estimation of the Filter Order 221 7.2 FIR Filter Design Based on Windowed Fourier Series 224 7.2.1 Least Integral-Squared Error Design of FIR Filters 224 7.2.2 Impulse Response Of Ideal Filters 225 7.2.3 Gibbs Phenomenon 228 7.2.4 Fixed Window Function 231 7.2.5 Adjustable Window Functions 236 7.2.6 Impulse Responses of FIR Filters with a Smooth Transition 239 7.3 Computer-Aided Design of Equiripple Linear-Phase FIR Filters 241 7.3.1 The Parks-McClellan Algorithm 242 7.3.2 The Shpak-Antoniou Algorithm 250 7.4 Design of Minimum-Phase FIR Filters 251 7.5 FIR Digital Filter Design Using MATLAB 252 7.5.1 FIR Digital Filter Order Estimation Using MATLAB 252 7.5.2 Equiripple Linear-Phase FIR Filter Design Using MATLAB 254 7.5.3 Minimum-Phase FIR Filter Design Using MATLAB 263 7.5.4 Window-Based FIR Filter esign Using MATLAB 267 7.6 Summary 269 Exercises 270 MATLAB Exercises 278 Bibliography 282

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网