您好,欢迎来到聚文网。
登录
免费注册
网站首页
|
搜索
热搜:
磁力片
|
漫画
|
购物车
0
我的订单
商品分类
首页
幼儿
文学
社科
教辅
生活
销量榜
仁者无敌面积法
装帧: 平装
出版社: 上海教育出版社
作者: 彭翕成 著
出版日期: 2011-06-01
商品条码: 9787544432573
版次: 1
开本: 16开
页数: 217
出版年份: 2011
定价:
¥28
销售价:
登录后查看价格
¥{{selectedSku?.salePrice}}
库存:
{{selectedSku?.stock}}
库存充足
{{item.title}}:
{{its.name}}
加入购物车
立即购买
加入书单
收藏
精选
¥5.83
世界图书名著昆虫记绿野仙踪木偶奇遇记儿童书籍彩图注音版
¥5.39
正版世界名著文学小说名家名译中学生课外阅读书籍图书批发 70册
¥8.58
简笔画10000例加厚版2-6岁幼儿童涂色本涂鸦本绘画本填色书正版
¥5.83
世界文学名著全49册中小学生青少年课外书籍文学小说批发正版
¥4.95
全优冲刺100分测试卷一二三四五六年级上下册语文数学英语模拟卷
¥8.69
父与子彩图注音完整版小学生图书批发儿童课外阅读书籍正版1册
¥24.2
好玩的洞洞拉拉书0-3岁宝宝早教益智游戏书机关立体翻翻书4册
¥7.15
幼儿认字识字大王3000字幼儿园中班大班学前班宝宝早教启蒙书
¥11.55
用思维导图读懂儿童心理学培养情绪管理与性格培养故事指导书
¥19.8
少年读漫画鬼谷子全6册在漫画中学国学小学生课外阅读书籍正版
¥64
科学真好玩
¥12.7
一年级下4册·读读童谣和儿歌
¥38.4
原生态新生代(传统木版年画的当代传承国际研讨会论文集)
¥11.14
法国经典中篇小说
¥11.32
上海的狐步舞--穆时英(中国现代文学馆馆藏初版本经典)
¥21.56
猫的摇篮(精)
¥30.72
幼儿园特色课程实施方案/幼儿园生命成长启蒙教育课程丛书
¥24.94
旧时风物(精)
¥12.04
三希堂三帖/墨林珍赏
¥6.88
寒山子庞居士诗帖/墨林珍赏
¥6.88
苕溪帖/墨林珍赏
¥6.88
楷书王维诗卷/墨林珍赏
¥9.46
兰亭序/墨林珍赏
¥7.74
祭侄文稿/墨林珍赏
¥7.74
蜀素帖/墨林珍赏
¥12.04
真草千字文/墨林珍赏
¥114.4
进宴仪轨(精)/中国古代舞乐域外图书
¥24.94
舞蹈音乐的基础理论与应用
内容简介
《仁者无敌面积法》介绍了面积法解题的基本工具:共边定理、共角定理,以及面积法解题的指导思想:消点法,并辅以大量例题来说明面积法解题的有效性。另外,《仁者无敌面积法》以专题形式介绍了面积法与勾股定理、托勒密定理等著名定理的关系,以及面积法在不等式、三角等多个数学分支中的应用。《仁者无敌面积法》以面积法为主线,串接了许多有趣的数学内容,适合中学生、中学教师以及数学爱好者阅读。
作者简介
张景中,数学家,计算机科学家,中国科学院院士。多年从事几何算法和定理机器证明研究,其成果曾获国家发明二等奖,中国科学院自然科学一等奖.国家自然科学二等奖。热心数学教育.提出教育数学的思想,并从事中学教学改革和微积分教学改革的研究。热爱科普事业,所著《数学家的眼光》等科普作品曾获国家科技进步二等奖、国家图书奖、“五个一”工程奖、全国科普创作等奖。
彭翕成,现工作于华中师范大学国家数字化学习工程技术研究中心,主要从事数学文化传播和数学教育技术的普及。发表论文百余篇,出版著作多部。2009年加入新青年数学教师工作室。
目录
第1章 面积法与勾股定理
1.1 面积法的起源
1.2 勾股定理的拼摆证明
1.3 勾股定理的分割证明
1.4 赵爽弦图的应用举例
第2章 共边、共角定理和消点法
2.1 共边定理
2.2 共角定理
2.3 消点法
2.4 几何定理的机器证明
第3章 共边定理的几种变式
3.1 合分比形式的共边定理
3.2 定比分点形式的共边定理
3.3 从解析法看共边定理
第4章 等积变换
4.1 平行线与等积变换
4.2 蝶形定理
4.3 单尺作图
第5章 面积割补
5.1 细分法
5.2 割补法
5.3 面积法与中位线
第6章 面积法与数形结合
第7章 面积问题
7.1 趣味面积问题
7.2 面积比例问题
第8章 线段问题
8.1 线段比例问题
8.2 线段比例和问题
8.3 等边三角形经典问题
第9章 角度问题
9.1 与角度相关的面积问题
9.2 用面积法求角度
第10章 面积法与不等式
10.1 面积放缩
10.2 几何不等式
第11章 面积法与三角恒等式
第12章 海伦一秦九韶公式
第13章 托勒密定理
第14章 三角形内一点问题
第15章 有向面积
第16章 面积法的局限性
第17章 高等数学与面积法
17.1 微积分与面积法
17.2 线性代数与面积法
17.3 几何概型与面积法
17.4 面积法还能走多远
附录 勾股定理的万能证明
参考文献
后记
×
Close
添加到书单
加载中...
点此新建书单
×
Close
新建书单
标题:
简介:
蜀ICP备2024047804号
Copyright 版权所有 © jvwen.com 聚文网