您好,欢迎来到聚文网。
登录
免费注册
网站首页
|
搜索
热搜:
磁力片
|
漫画
|
购物车
0
我的订单
商品分类
首页
幼儿
文学
社科
教辅
生活
销量榜
数学物理方法
字数: 518000
装帧: 平装
出版社: 北京大学出版社
作者: 吴崇试 编著 著
出版日期: 2003-12-01
商品条码: 9787301068199
版次: 2
开本: 16开
页数: 368
出版年份: 2003
定价:
¥42
销售价:
登录后查看价格
¥{{selectedSku?.salePrice}}
库存:
{{selectedSku?.stock}}
库存充足
{{item.title}}:
{{its.name}}
加入购物车
立即购买
加入书单
收藏
精选
¥5.83
世界图书名著昆虫记绿野仙踪木偶奇遇记儿童书籍彩图注音版
¥5.39
正版世界名著文学小说名家名译中学生课外阅读书籍图书批发 70册
¥8.58
简笔画10000例加厚版2-6岁幼儿童涂色本涂鸦本绘画本填色书正版
¥5.83
世界文学名著全49册中小学生青少年课外书籍文学小说批发正版
¥4.95
全优冲刺100分测试卷一二三四五六年级上下册语文数学英语模拟卷
¥8.69
父与子彩图注音完整版小学生图书批发儿童课外阅读书籍正版1册
¥24.2
好玩的洞洞拉拉书0-3岁宝宝早教益智游戏书机关立体翻翻书4册
¥7.15
幼儿认字识字大王3000字幼儿园中班大班学前班宝宝早教启蒙书
¥11.55
用思维导图读懂儿童心理学培养情绪管理与性格培养故事指导书
¥19.8
少年读漫画鬼谷子全6册在漫画中学国学小学生课外阅读书籍正版
¥64
科学真好玩
¥12.7
一年级下4册·读读童谣和儿歌
¥38.4
原生态新生代(传统木版年画的当代传承国际研讨会论文集)
¥11.14
法国经典中篇小说
¥11.32
上海的狐步舞--穆时英(中国现代文学馆馆藏初版本经典)
¥21.56
猫的摇篮(精)
¥30.72
幼儿园特色课程实施方案/幼儿园生命成长启蒙教育课程丛书
¥24.94
旧时风物(精)
¥12.04
三希堂三帖/墨林珍赏
¥6.88
寒山子庞居士诗帖/墨林珍赏
¥6.88
苕溪帖/墨林珍赏
¥6.88
楷书王维诗卷/墨林珍赏
¥9.46
兰亭序/墨林珍赏
¥7.74
祭侄文稿/墨林珍赏
¥7.74
蜀素帖/墨林珍赏
¥12.04
真草千字文/墨林珍赏
¥114.4
进宴仪轨(精)/中国古代舞乐域外图书
¥24.94
舞蹈音乐的基础理论与应用
编辑推荐
本书为普通高等教育“十五”国家级规划教材,主要包括复变函数与数理方程两部分。其中复变函数主要内容涉及复变积分、无穷级数、二阶线性常微分方程的幂级数解法、留数定理及其应用、拉普拉斯变换等;数理方程主要介绍了线性偏微分方程的通解、分离变量法、正交曲面坐标系、柱函数、积分变换的应用等内容。
内容简介
本书包括复变函数与数理方程两部分,兼顾理论体系的完整与实用的解题技巧。在物理类数学物理方法教材的传统内容之外,增加了发级数与渐近级数、默比乌斯变换、经性偏微分方程的通解、三种基本类型数理方程解的定性性质、拉普拉斯算符的不变性等;补充了关于外微分运算、小波变换与非线性偏微分方程的简介;部分内容(如Γ函数及勒让德多项式)也采用一些新的讲法,并比较完整地给出了“分离变量法总结”订正了目前工具书中的几个特殊函数公式。介绍了计算机软件Marthematica在复变函数计算中的应用。附有习题与答案。
作者简介
吴崇试,1938年生,1962年毕业于北京大学物理系,北京大学物理系教授,博士生导师,享受政府特殊津帖。1996年被推举为高校教学物理方法教学研究会理事会主任委员。1998年被聘为北京大学主干基础课主持人。两度获得北京大学年度教学优秀奖。2003年《教学物理方法》课程被评为北京市高等学校精品课程,2004年评为国家级精品课程,并获得北京大学2004年教学成果奖一等奖和北京市2004年高等教育教学成果奖一等奖。
目录
第一部分 复变函数
1 复数和复变函数
1.1 预备知识:复数与复数运算
1.2 复数序列
1.3 复变函数
1.4 复变函数的极限和连续
1.5 无穷远点
*1.6 正十七边形问题
习题
2 解析函数
2.1 可导与可微
2.2 解析函数
2.3 初等函数
2.4 多值函数
*2.5 解析函数的保角性
习题
3 复变积分
3.1 复变积分
3.2 单连通区域的柯西定理
3.3 复连通区域的柯西定理
3.4 两个有用的引理
3.5 柯西积分公式
3.6 解析函数的高阶导数
3.7 柯西型积分及含参量积分的解析性
*3.8 泊松公式
习题
4 无穷级数
4.1 复数级数
4.2 二重级数
4.3 函数级数
4.4 幂级数
4.5 含参量的反常积分的解析性
*4.6 发散级数与渐近级数
习颢
5 解析函数的局域性展开
5.1 解析函数的泰勒展开
5.2 泰勒级数求法举例
5.3 解析函数的零点孤立性和解析函数的唯一性
5.4 解析函数的洛朗展开
5.5 洛朗级数求法举例
5.6 单值函数的孤立奇点
5.7 解析延拓
*5.8 伯努利数和欧拉数
习题
6 二阶线性常微分方程的幂级数解法
6.1 二阶线性常微分方程的常点和奇点
6.2 方程常点邻域内的解
6.3 方程正则奇点邻域内的解
6.4 贝塞耳方程的解
*6.5 方程非正则奇点附近的解
习题
7 留数定理及其应用
7.1 留数定理
*7.2 有理三角函数的积分
*7.3 无穷积分
7.4 含三角函数的无穷积分
*7.5 实轴上有奇点的情形
*7.6 多值函数的积分
*7.7 应用留数定理计算无穷级数的和
*7.8 留数定理的其他应用
习题
8 Γ函数
8.1 Γ函数的定义
8.2 Γ函数的基本性质
8.3 ψ函数
8.4 B函数
*8.5 Γ函数的普遍表达式
*8.6 Γ函数的渐近展开
*8.7 几个特殊函数公式的订正
*8.8 黎曼(函数和默比乌斯变换
习题
9 拉普拉斯变换
9.1 拉普拉斯变换
9.2 拉普拉斯变换的基本性质
9.3 拉普拉斯变换的反演
9.4 普遍反演公式
*9.5 利用拉普拉斯变换计算级数和
习题
10 δ函数
10.i δ函数
*10.2 利用δ函数计算定积分
*10.3 常微分方程初值问题的格林函数
*10.4 常微分方程边值问题的格林函数
*10.5 求解常微分方程的格林函数方法
习题
*11 Mathematica中的复变函数
*11.1 Mathematica扣的数及其运算
*11.2 变量和函数
*11.3 极限和微积分计算
*11.4 幂级数张开与求和
*11.5 求解微分方程
*11.6 拉普拉斯变换和傅里叶变换
*11.7 δ函数
*11.8 Mathematica作图
第二部分 数学物理方程
12 数学物理方程和定解条件
12.1 弦的横振动方程
12.2 杆的纵振动方程
12.3 热传导方程
12.4 稳定问题
12.5 边界条件与初始条件
12.6 内部界面上的连接条件
t2.7 定解问题的适定性
习题
*13 线性偏微分方程的通解
*13.1 线性偏微分方程解的叠加性
*13.2 常系数线性齐次偏微分方程的通解
*13.3 常系数线性非齐次偏微分方程的通解
*13.4 特殊的变系数线性齐次偏微分方程
*13.5 波动方程的行波解
*13.6 波的耗散和色散
*13.7 热传导方程的定性讨论
*13.8 拉普拉斯方程的定性讨论
习题
14 分离变量法
14.1 两端固定弦的自由振动
14.2 分离变量法的物理诠释
14.3 矩形区域内的稳定问题
14.4 多于两个自变量的定解问题
14.5 两端固定弦的受迫振动
14.6 非齐次边界条件的齐次化
习题
15 正交曲面坐标系
15.1 正交曲面坐标系
*15.2 正交曲面坐标系中的拉普拉斯算符
*15.3 拉普拉斯算符的平移、转动和反射不变性
15.4 圆形区域
15.5 亥姆霍兹方程在柱坐标系下的分离变量
15.6 亥姆霍兹方程在球坐标系下的分离变量
*15.7 矢量波动方程和矢量亥姆霍兹方程
习题
16 球函数
16.1 勒让德方程的解
16.2 勒让德多项式
16.3 勒让德多项式的微分表示
16.4 勒让德多项式的正交完备性
16.5 勒让德多项式的生成函数
16.6 勒让德多项式的递推关系
16.7 勒让德多项式应用举例
16.8 连带勒让德函数
16.9 球面调和函数
*16.10 连带勒让德函数的加法公式
*16.11 超几何函数
习题
17 柱函数
17.1 贝塞耳函数和诺伊曼函数
17.2 贝塞耳函数的递推关系
17.3 贝塞耳函数的渐近展开
17.4 整数阶贝塞耳函数的生成函数和积分表示
17.5 贝塞耳方程的本征值问题
*17.6 汉克尔函数
*17.7 虚宗量贝塞耳函数
17.8 半奇数阶贝塞耳函数
17.9 球贝塞耳函数
*17.10 合流超几何函数
附录 涉及贝塞耳函数的常微分方程
习题
18 分离变量法总结
*18.1 内积空间
*18.2 函数空间
18.3 自伴算符的本征值问题
18.4 斯图姆-刘维尔型方程的本征值问题
18.5 斯图姆-刘维尔型方程本征值问题的简并现象
18.6 从斯图姆-刘维尔型方程的本征值问题看分离变量法
习题
19 积分变换的应用
19.1 拉普拉斯变换
19.2 傅里叶变换
*19.3 半无界空间的情形
*19.4 关于积分变换的一般讨论
*19.5 小波变换简介
习题
20 格林函数方法
20.1 格林函数的概念
20.2 稳定问题格林函数的一般性质
20.3 三维无界空间亥姆霍兹方程的格林函数
20.4 圆内泊松方程第一边值问题的格林函数
*20.5 波动方程的格林函数
*20.6 热传导方程的格林函数
习题
21 变分法初步
21.1 泛函的概念
21.2 泛函的极值
21.3 泛函的条件极值
21.4 微分方程定解问题和本征值问题的变分形式
*21.5 变边值问题
21.6 瑞利-里兹方法
习题
22 数学物理方程综述
22.1 二阶线性偏微分方程的分类
22.2 线性偏微分方程解法述评
22.3 非线性偏微分方程问题
22.4 结束语
习题
参考书目
外国人名译名中英对照表
习题答案
×
Close
添加到书单
加载中...
点此新建书单
×
Close
新建书单
标题:
简介:
蜀ICP备2024047804号
Copyright 版权所有 © jvwen.com 聚文网