您好,欢迎来到聚文网。 登录 免费注册
高等数学

高等数学

  • 字数: 411.00千字
  • 装帧: 平装
  • 出版社: 东南大学出版社
  • 作者: 东南大学大学数学教研室 编著 著作
  • 出版日期: 2015-01-01
  • 商品条码: 9787564154820
  • 版次: 1
  • 开本: 16开
  • 页数: 325
  • 出版年份: 2015
定价:¥43 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
《高等院校双语教学规划教材:高等数学(下)(英文版)》是为响应东南大学靠前化需要,根据国家教育部非数学专业数学基础课教学指导分委员会制定的工科类本科数学基础课程教学基本要求,并结合东南大学数学系多年教学改革实践经验编写的全英文教材全书分为上、下两册,内容包括极限、一元函数微分学、一元函数积分学、常微分方程、级数、向量代数与空间解析几何、多元函数微分学、多元函数积分学、向量场的积分、复变函数等十个章节。
目录
Chapter 5 Infinite Series
5.1 Infinite Series
5.1.1 The Concept of Infinite Series
5.1.2 Conditions for Convergence
5.1.3 Properties of Series
Exercise 5.1
5.2 Tests for Convergence of Positive Series
Exercise 5.2
5.3 Alternating Series, Absolute Convergence, and Conditional
Convergence
5.3.1 Alternating Series
5.3.2 Absolute Convergence and Conditional Convergence
Exercise 5.3
5.4 Tests for Improper Integrals
5.4.1 Tests for the Improper Integrals.Infinite Limits of
Integration
5.4.2 Tests for the Improper Integrals: Infinite Integrands
5.4.3 The Gamma Function
Exercise 5.4
5.5 Infinite Series of Functions
5.5.1 General Definitions
5.5.2 Uniform Convergence of Series
5.5.3 Properties of Uniformly Convergent Functional Series
Exercise 5.5
5.6 Power Series
5.6.1 The Radius and Interval of Convergence
5.6.2 Properties of Power Series
5.6.3 Expanding Functions into Power Series
Exercise 5.6
5.7 Fourier Series
5.7.1 The Concept of Fourier Series
5.7.2 Fourier Sine and Cosine Series
5.7.3 Expanding Functions with Arbitrary Period
Exercise 5.7
Review and Exercise
Chapter 6 Vectors and Analytic Geometry in Space
6.Vectors
6.1.1 Vectors
6.1.2 Linear Operations on Vectors
6.1.3 Dot Products and Cross Product
Exercise 6.1
6.2 Operations on Vectors in Cartesian Coordinates in Three Space
6.2.1 Cartesian Coordinates in Three Space
6.2.2 Operations on Vectors in Cartesian Coordinates
Exercise 6.2
6.3 Planes and Lines in Space
6.3.1 Equations for Plane
6.3.2 Lines
6.3.3 Some Problems Related to Lines and Planes
Exercise 6.3
6.4 Curves and Surfaces in Space
6.4.1 Sphere and Cylinder
6.4.2 Curves in Space
6.4.3 Surfaces of Revolution
6.4.4 Quadric Surfaces
Exercise 6.4 1
Exercise Review 1
Chapter 7 Multivariable Functions and Partial Derivatives
7.1 Functions of Several Variables
Exercise 7.1
7.2 Limits and Continuity
Exercise 7.2
7.3 Partial Derivative
7.3.1 Partial Derivative
7.3.2 Second Order Partial Derivatives
Exercise 7.3
7.4 Differentials
Exercise 7.4
7.5 Rules for Finding Partial Derivative
7.5.1 The Chain Rule
7.5.2 Implicit Differentiation
Exercise 7.5
7.6 Direction Derivatives, Gradient Vectors
7.6.1 Direction Derivatives
7.6.2 Gradient Vectors
Exercise 7.6
7.7 Geometric Applications o{ Differentiation of Functions of
Several Variables
7.7.1 Tangent Line and Normal Plan to a Curve
7.7.2 Tangent Plane and Normal Line to a Surface
Exercise 7.7
7.8 Taylor Formula for Functions of Two Variables and Extreme Values
7.8.1 Taylor Formula for Functions of Two Variables
7.8.2 Extreme Values
7.8.3 Absolute Maxima and Minima on Closed Bounded Regions
……
Chapter 8 Multiple Integrals
Chapter 9 Integration in Vectors Field
Chapter 10 Complex Analysis

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网