您好,欢迎来到聚文网。 登录 免费注册
磁性材料

磁性材料

  • 装帧: 平装
  • 出版社: 世界图书出版公司北京公司
  • 作者: (美)斯波尔丁(Nicola A.Spaldin) 著 著
  • 出版日期: 2015-03-01
  • 商品条码: 9787510087714
  • 开本: 16开
  • 页数: 274
  • 出版年份: 2015
定价:¥79 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书是一部学习磁性、磁性材料及其在现代设备技术中应用的基础优秀入门书籍。保持了第一版的风格,但又将这个领域的重要进展包括其中,做了全面修订,包括基本磁现象的更深理解、磁性的新种类和设备方面的变化。书中大量的课后作业、精选问题的解答和参考资料的详细列表,使得本书仍然是最理想的一学期教程和刚涉猎这个领域的科研人员的参考书籍。这版较上一版的不同之处:全新一章有关交换偏置耦合;全面更新多重铁性和电磁材料、磁性绝缘体;扩展了有关磁性记忆、磁性半导体的章节;将该领域的最新进展包括进来,并且增加了新的问题案例和解答。
目次:(基础)静磁学基础概要;磁化和磁性材料;磁性的原子起源;抗磁性;顺磁性;铁磁材料相互作用;铁磁畴;反铁磁性;铁磁性;基础小节;(磁现象)异向性;纳米粒子和薄膜;磁致电阻;交换偏置;(设备应用和新材料)磁数据存储;磁光学和磁光记忆;磁性半导体和绝缘体;铁磁电材料;小节。
读者对象:材料、磁性材料方面的学生和相关的科研人员。
作者简介
Nicola A. Spaldin,是国际知名学者,在数学和物理学界享有盛誉。本书凝聚了作者多年科研和教学成果,适用于科研工作者、高校教师和研究生。
目录
Acknowledgments
Ⅰ Basics
1 Review of basic magnetostatics
1.1 Magnetic field
1.1.1 Magnetic poles
1.1.2 Magnetic flux
1.1.3 Circulating currents
1.1.4 Ampere's circuital law
1.1.5 Biot—Savart law
1.1.6 Field from a straight wire
1.2 Magnetic moment
1.2.1 Magnetic dipole
1.3 Definitions
Homework
2 Magnetization and magnetic materials
2.1 Magnetic induction and magnetization
2.2 Flux density
2.3 Susceptibility and permeability
2.4 Hysteresis loops
2.5 Definitions
2.6 Units and conversions
Homework
3 Atomic origins of magnetism
3.1 Solution of the Schrodinger equation for a free atom
3.1.1 What do the quantum numbers represent?
3.2 The normal Zeeman effect
3.3 Electron spin
3.4 Extension to many—electron atoms
3.4.1 Pauli exclusion principle
3.5 Spin—orbit coupling
3.5.1 Russell—Saunderscoupling
3.5.2 Hund's rules
3.5.3 jj coupling
3.5.4 The anomalous Zeeman effect
Homework
4 Diamagnetism
4.1 Observing the diamagnetic effect
4.2 Diamagnetic susceptibility
4.3 Diamagnetic substances
4.4 Uses of diamagnetic materials
4.5 Superconductivity
4.5.1 The Meissner effect
4.5.2 Critical field
4.5.3 Classification of superconductors
4.5.4 Superconducting materials
4.5.5 Applications for superconductors
Homework
5 Paramagnetism
5.1 Langevin theory of paramagnetism
5.2 The Curie—Weiss law
5.3 Quenching of orbital angular momentum
5.4 Pauli paramagnetism
5.4.1 Energy bands in solids
5.4.2 Free—electron theory of metals
5.4.3 Susceptibility of Pauli paramagnets
5.5 Paramagnetic oxygen
5.6 Uses of paramagnets
Homework
6 Interactions in ferromagnetic materials
6.1 Weiss molecular field theory
6.1.1 Spontaneous magnetization
6.1.2 Effect of temperature on magnetization
6.2 Origin of the Weiss molecular field
6.2.1 Quantum mechanics of the He atom
6.3 Collective—electron theory of ferromagnetism
6.3.1 The Slater—Pauling curve
6.4 Summary
Homework
7 Ferromagneticdomains
7.1 Observingdomains
7.2 Why domains occur
7.2.1 Magnetostatic energy
7.2.2 Magnetocrystalline energy
7.2.3 Magnetostrictive energy
7.3 Domain walls
7.4 Magnetization and hysteresis
Homework
8 Antiferromagnetism
8.1 Neutron diffraction
8.2 Weiss theory of antiferromagnetism
8.2.1 Susceptibility above TN
8.2.2 Weiss theory at TN
8.2.3 Spontaneous magnetization below TN
8.2.4 Susceptibility below TN
8.3 What causes the negative molecular field?
8.4 Uses of antiferromagnets
Homework
9 Ferrimagnetism
9.1 Weiss theory of ferrimagnetism
9.1.1 Weiss theory above Tc
9.1.2 Weiss theory below Tc
9.2 Ferrites
9.2.1 The cubic ferrites
9.2.2 The hexagonal ferrites
9.3 Thegarnets
9.4 Half—metallic antiferromagnets
Homework
10 Summary of basics
10.1 Review of types of magnetic ordering
10.2 Review of physics determining types of magnetic ordering
Ⅱ Magnetic phenomena
11 Anisotropy
11.1 Magnetocrystalline anisotropy
11.1.1 Origin of magnetocrystalline anisotropy
11.1.2 Symmetry of magnetocrystalline anisotropy
11.2 Shape anisotropy
11.2.1 Demagnetizing field
11.3 Induced magnetic anisotropy
11.3.1 Magnetic annealing
11.3.2 Roll anisotropy
11.3.3 Explanation for induced magnetic anisotropy
11.3.4 Other ways of inducing magnetic anisotropy
Homework
12 Nanoparticles and thin films
12.1 Magnetic properties of small particles
12.1.1 Experimental evidence for single—domain particles
12.1.2 Magnetization mechanism
12.1.3 Superparamagnetism
12.2 Thin—film magnetism
12.2.1 Structure
12.2.2 Interfaces
12.2.3 Anisotropy
12.2.4 How thin is thin?
12.2.5 The limit of two—dimensionality
13 Magnetoresistance
13.1 Magnetoresistance in normal metals
13.2 Magnetoresistance in ferromagnetic metals
13.2.1 Anisotropic magnetoresistance
13.2.2 Magnetoresistance from spontaneous magnetization
13.2.3 Giant magnetoresistance
13.3 Colossal magnetoresistance
13.3.1 Superexchange and double exchange
Homework
14 Exchange bias
14.1 Problems with the simple cartoon mechanism
14.1.1 Ongoing research on exchange bias
14.2 Exchange anisotropy in technology
Ⅲ Device applications and novel materials
15 Magnetic data storage
15.1 Introduction
15.2 Magnetic media
15.2.1 Materials used in magnetic media
15.2.2 The other components of magnetic hard disks
15.3 Write heads
15.4 Read heads
15.5 Future of magnetic data storage
16 Magneto—optics and magneto—optic recording
16.1 Magneto—optics basics
16.1.1 Kerr effect
16.1.2 Faraday effect
16.1.3 Physical origin of magneto—optic effects
16.2 Magneto—optic recording
16.2.1 Other types of optical storage, and the future of magneto—optic recording
17 Magnetic semiconductors and insulators
17.1 Exchange interactions in magnetic semiconductors and insulators
17.1.1 Direct exchange and superexchange
17.1.2 Carrier—mediated exchange
17.1.3 Bound magnetic polarons
17.2 Ⅱ—Ⅵ diluted magnetic semiconductors—(Zn,Mn)Se
17.2.1 Enhanced Zeeman splitting
17.2.2 Persistent spin coherence
17.2.3 Spin—polarized transport
17.2.4 Other architectures
17.3 Ⅲ—Ⅴ diluted magnetic semiconductors—(Ga,Mn)As
17.3.1 Rare—earth—group—V compounds—ErAs
17.4 Oxide—based diluted magnetic semiconductors
17.5 Ferromagnetic insulators
17.5.1 Crystal—field and Jahn—Teller effects
17.5.2 YTiO3 and SeCuO3
17.5.3 BiMnO3
17.5.4 Europium oxide
17.5.5 Double perovskites
17.6 Summary
18 Multiferroics
18.1 Comparison of ferromagnetism and other types of ferroic ordering
18.1.1 Ferroelectrics
18.1.2 Ferroelastics
18.1.3 Ferrotoroidics
18.2 Multiferroics that combine magnetism and ferroelectricity
18.2.1 The contra—indication between magnetism and ferroelectricity
18.2.2 Routes to combining magnetism and ferroelectricity
18.2.3 The magnetoelectric effect
18.3 Summary
Epilogue
Solutions to selected exercises
References
Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网