您好,欢迎来到聚文网。 登录 免费注册
无限维李代数

无限维李代数

  • 出版社: 世界图书出版社
  • 作者: VICTOR G.KAC 著作
  • 出版日期: 2008-03-01
  • 商品条码: 9787506282062
  • 版次: 1
  • 出版年份: 2008
定价:¥39 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书是一部很好不错著作。Kac是该领域的创始人和专家,在无限维李代数和理论物理等领域做出了杰出的贡献。
    Kac-Moody代数是近代代数中一个极为重要的分支,在理论物理学、数学物理学及许多数学领域中都有重要的应用。本书详细讨论了无限维李代数中很好重要的Kac-Moody代数的基本理论及其表示理论,全面介绍了Kac-Moody代数在数学和物理学中的应用。书中定理的陈述和证明简明扼要,各章有大量习题以及提示。
目录
Introduction.
Notational Conventions
Chapter 1. Basic Definitions
Chapter 2. The lnvariant Bilinear Form and the Generalized Casimir Operator
Chapter 3. Integrable Representations of Kac-Moody Algebras and the Weyl Group
Chapter 4. A Classification of Generalized Caftan Matrices
Chapter 5. Real and Imaginary Roots
Chapter 6. Affine Algebras: the Normalized Invariant Form, the Root System, and the Weyl Group
Chapter 7. Affine Algebras as Central Extensions of Loop Algebras
Chapter 8. Twisted Affine Algebras and Finite Order Automorphisms
Chapter 9. Highest-Weight Modules over Kac-Moody Algebras
Chapter 10. Integrable Highest-Weight Modules: the Character Formula
Chapter 11. Integrable Highest-Weight Modules: the Weight System and the Unitarizability
Chapter 12. Integrable Highest-Weight Modules over Affine Algebras. Application to η-Function Identities. Sugawara Operators and Branching Functions
Chapter 13. Affine Algebras, Theta Functions, and Modular Forms
Chapter 14. The Principal and Homogeneous Vertex Operator Constructions of the Basic Representation. Boson-Fermion Correspondence. Application to Soliton Equations
Index of Notations and Definitions
References
Conference Proceedings and Collections of Papers

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网