您好,欢迎来到聚文网。 登录 免费注册
统计力学(第3版)

统计力学(第3版)

  • 装帧: 平装
  • 出版社: 上海世界图书出版公司
  • 作者: (美)帕斯瑞  著
  • 出版日期: 2012-06-01
  • 商品条码: 9787510044120
  • 版次: 1
  • 开本: 16开
  • 页数: 718
  • 出版年份: 2012
定价:¥139 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
    这是一本研究生水平的统计力学经典教材。是以作者多年来在几所大学为研究生授课的讲义为蓝本而写成的。《统计力学(第3版)》初版于1972年,其内容涵盖了统计力学的标准内容,叙述清晰详细,深受读者欢迎。第2版对第1版的内容作了补充和删改,重写了关于相变理论的部分,增加了临界现象的重正化群理论的内容。《统计力学(第3版)》是第3版,增加了一些有关波色—爱因斯坦凝聚态和超冷原子气体的退化费米行为章节和讲述计算模拟方法和早期宇宙热动力学的两章;也增加了化学和相变平衡,扩充讲述了其与散布、量子场、有限尺寸效应和涨落耗散定理的相互关系。希望这个新的版本一如既往地为新一代的学习统计物理的学生提供坚实的基础。每章末增加了注释并附有习题。
    读者对象:物理学专业的研究生、教师及科研人员。
目录
  preface to the third edition
preface to the second edition
preface to the first edition
historical introduction
1. the statistical basis of thermodynamics
  1.1. the macroscopic and the microscopic states
  1.2. contact between statistics and thermodynamics:physical significance of the number (n, v,e)
  1.3. further contact between statistics and thermodynamics
  1.4. the classical ideal gas
  1.5. the entropy of mixing and the gibbs paradox
  1.6. the "correct" enumeration of the microstates
  problems
2. elements of ensemble theory
  2.1. phase space of a classical system
  2.2. liouville's theorem and its consequences
  2.3. the microcanordcal ensemble
  2.4. examples
  2.5. quantum states and the phase space
  problems
3. the canonical ensemble
  3.1. equilibrium between a system and a heat reservoir
  3.2. a system in the canonical ensemble
  3.3. physical significance of the various statistical quantities in the canonical ensemble
  3.4. alternative expressions for the partition function
  3.5. the classical systems
  3.6. energy fluctuations in the canonical ensemble:correspondence with the microcanonical ensemble
  3.7. two theorems - the "equipartition" and the "virial"
  3.8. a system of harmonic oscillators
  3.9. the statistics of paramagnetism
  3.10. thermodynamics of magnetic systems:negative temperatures
  problems
4. the grand canonical ensemble
  4.1. equilibrium between a system and a particle-energy reservoir
  4.2. a system in the grand canonical ensemble
  4.3. physical significance of the various statistical quantities
  4.4. examples
  4.5. density and energy fluctuations in the grand canonical ensemble: correspondence with other ensembles
  4.6. thermodynamic phase diagrams
  4.7. phase equilibrium and the clausius-clapeyron equation
  problems
5. formulation of quantum statistics
  5.1. quantum-mechanical ensemble theory:the density matrix
  5.2. statistics of the various ensembles
  5.3. examples
  5.4. systems composed of indistinguishable particles
  5.5. the density matrix and the partition function of a system of free particles
  problems
6. the theory of simple gases
  6.1. an ideal gas in a quantum-mechanical microcanonical ensemble
  6.2. an ideal gas in other quantum-mechanical ensembles
  6.3. statistics of the occupation numbers
  6.4. kinetic considerations
  6.5. gaseous systems composed of molecules with internal motion
  6.6. chemical equilibrium problems
7. ideal bose systems
  7.1. thermodynamic behavior of an ideal bose gas
  7.2. bose-einstein condensation in ultracold atomic gases
  7.3. thermodynamics of the blackbody radiation
  7.4. the field of sound waves
  7.5. inertial density of the sound field
  7.6. elementary excitations in liquid helium ii
  problems
8. ideal fermi systems
  8.1. thermodynamic behavior of an ideal fermi gas
  8.2. magnetic behavior of an ideal fermi gas
  8.3. the electron gas in metals
  8.4. ultracold atomic fermi gases
  8.5. statistical equilibrium of white dwarf stars
  8.6. statistical model of the atom
  problems
9. thermodynamics of the early universe
  9.1. observational evidence of the big bang
  9.2. evolution of the temperature of the universe
  9.3. relativistic electrons, positrons, and neutrinos
  9.4. neutron fraction
  9.5. annihilation of the positrons and electrons
  9.6. neutrino temperature
  9.7. primordial nucleosynthesis
  9.8. recombination
  9.9. epilogue
  problems
10. statistical mechanics of interacting systems:the method of cluster expansions
  10.1. cluster expansion for a classical gas
  10.2. virial expansion of the equation of state
  10.3. evaluation of the virial coefficients
  10.4. general remarks on cluster expansions
  10.5. exact treatment of the second virial coefficient
  10.6. cluster expansion for a quantum-mechanical system
  10.7. correlations and scattering
  problems
11. statistical mechanics of interacting systems:the method of quantized fields
  11.1. the formalism of second quantization
  11.2. low-temperature behavior of an imperfect bose gas
  11.3. low-lying states of an imperfect bose gas
  11.4. energy spectrum of a bose liquid
  11.5. states with quantized circulation
  11.6. quantized vortex rings and the breakdown of superfluidity
  11.7. low-lying states of an imperfect fermi gas
  11.8. energy spectrum of a fermi liquid: landau's phenomenological theory
  11.9. condensation in fermi systems
  problems
12. phase transitions: criticality, universality, and scaling
  12.1. general remarks on the problem of condensation
  12.2. condensation of a van der waals gas
  12.3. a dynamical model of phase transitions
  12.4. the lattice gas and the binary alloy
  12.5. ising model in the zeroth approximation
  12.6. ising model in the first approximation
  12.7. the critical exponents
  12.8. thermodynamic inequalities
  12.9. landau's phenomenological theory
  12.10. scaling hypothesis for thermodynamic functions
  12.11. the role of correlations and fluctuations
  12.12. the critical exponents v and
  12.13. a final look at the mean field theory
  problems
13. phase transitions: exact (or almost exact) results for various models
  13.1. one-dimensional fluid models
  13.2. the ising model in one dimension
  13.3. the n-vector models in one dimension
  13.4. the ising model in two dimensions
  13.5. the spherical model in arbitrary dimensions
  13.6. the ideal bose gas in arbitrary dimensions
  13.7. other models
  problems
14. phase transitions: the renormalization group approach
  14.1. the conceptual basis of scaling
  14.2. some simple examples of renormalization
  14.3. the renormalization group: general formulation
  14.4. applications of the renormalization group
  14.5. finite-size scaling
  problems
15. fluctuations and nonequilibrium statistical mechanics
  15.1. equilibrium thermodynamic fluctuations
  15.2. the einstein-smoluchowski theory of the brownian motion
  15.3. the langevin theory of the brownian motion
  15.4. approach to equilibrium: the fokker-planck equation
  15.5. spectral analysis of fluctuations: the wiener-khintchine theorem
  15.6. the fluctuation-dissipation theorem
  15.7. the onsager relations
  problems
16. computer simulations
  16.1. introductionand statistics
  16.2. monte carlo simulations
  16.3. molecular dynamics
  16.5. computer simulation caveats
  problems
  appendices
  a. influence of boundary conditions on the distribution of quantum states
  b. certain mathematical functions
  c. "volume" and "surface area" of an n-dimensional sphere of radius r
  d. on bose-einstein functionse. on fermi-dirac functions
  f. a rigorous analysis of the ideal bose gas and the onset of bose-einstein condensation
  g. on watson functions
  h. thermodynamic relationships
  i. pseudorandom numbers
  bibliography
  index     

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网