您好,欢迎来到聚文网。 登录 免费注册
融合数字电路与存内计算的高能效神经网络处理器(英文版)

融合数字电路与存内计算的高能效神经网络处理器(英文版)

  • 字数: 198000
  • 装帧: 精装
  • 出版社: 清华大学出版社
  • 作者: 岳金山 著
  • 出版日期: 2024-08-01
  • 商品条码: 9787302656005
  • 版次: 1
  • 开本: 32开
  • 页数: 280
  • 出版年份: 2024
定价:¥89 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
神经网络算法在诸多领域具有广泛应用,本书针对神经网络在低功耗智能设备上实际应用中遇到的关键挑战,研究了融合数字电路与存内计算的高能效神经网络处理器。
本书创新成果包括:①提出了一种基于特定卷积核的数据复用架构,提升了能量效率;②针对不规则稀疏的额外硬件开销,设计了频域神经网络处理器,支持高效FFT计算和频域二维数据复用;③提出了一种存内计算系统架构,支持分块结构化稀疏、数据复用与ADC动态关断;④针对现有存内计算芯片难以支持大规模网络的挑战,提出了组相联稀疏存内计算架构,支持乒乓权重更新,并进行了流片验证。
本书展示了融合数字电路与存内计算的技术路线。证明充分利用数字电路与存内计算的优势,结合器件、电路、架构和算法应用等多层次联合优化能够实现更高能效。
作者简介
岳金山博士于2016年和2021年分别获得清华大学本科和博士学位,于2021年进入中国科学院微电子研究所从事博士后研究。主要研究方向包括高能效神经网络加速芯片、存内计算和基于新型器件的电路与系统。目前已发表30余篇期刊/会议论文,包括2篇一作JSSC和3篇一作ISSCC。曾获得ASP-DAC2021学生论坛最佳海报奖,清华大学优秀博士学位论文奖,入选北京市科技新星计划。
目录
1 Introduction 1
1.1 Research Background and Significance 1
1.1.1 Development Trends of Neural Network 1
1.1.2 Requirements of NN Processor 2
1.1.3 Energy-Efficient NN Processors 4
1.2 Summary of the Research Work 6
1.2.1 Overall Framework of the Research Work 6
1.2.2 Main Contributions of This Book 7
1.3 Overall Structure of This Book 8
References 9
2 Basics and Research Status of Neural Network Processors 13
2.1 Basics of Neural Network Algorithms 13
2.2 Basics of Neural Network Processors 16
2.3 Research Status of Digital-Circuits-Based NN Processors 18
2.3.1 Data Reuse 18
2.3.2 Low-Bit Quantization 20
2.3.3 NN Model Compression and Sparsity 21
2.3.4 Summary of Digital-Circuits-Based NN Processors 23
2.4 Research Status of CIM NN Processors 23
2.4.1 CIM Principle 24
2.4.2 CIM Devices 25
2.4.3 CIM Circuits 26
2.4.4 CIM Macro 27
2.4.5 Summary of CIM NN Processors 28
2.5 Summary of This Chapter 28
References 29
3 Energy-Efficient NN Processor by Optimizing Data Reuse for Specific Convolutional Kernels 33
3.1 Introduction 33
3.2 Previous Data Reuse Methods and the Constraints 33
3.3 The KOP3 Processor Optimized for Specific Convolutional Kernels 35
3.4 Processing Array Optimized for Specific Convolutional Kernels 36
3.5 Local Memory Cyclic Access Architecture and Scheduling Strategy 39
3.6 Module-Level Parallel Instruction Set and the Control Circuits 40
3.7 Experimental Results 41
3.8 Conclusion 44
References 45
4 Optimized Neural Network Processor Based on Frequency-Domain Compression Algorithm 47
4.1 Introduction 47
4.2 The Limitations of Irregular Sparse Optimization and CirCNN Frequency-Domain Compression Algorithm 47
4.3 Frequency-Domain NN Processor STICKER-T 50
4.4 Global-Parallel Bit-Serial FFT Circuits 52
4.5 Frequency-Domain 2D Data-Reuse MAC Array 55
4.6 Small-Area Low-Power Block-Wise TRAM 59
4.7 Chip Measurement Results and Comparison 62
4.8 Summary of This Chapter 69
References 69
5 Digital Circuits and CIM Integrated NN Processor 71
5.1 Introduction 71
5.2 The Advantage of CIM Over Pure Digital Circuits 71
5.3 Design Challenges for System-Level CIM Chips 74
5.4 Sparse CIM Processor STICKER-IM 78
5.5 Structural Block-Wise Weight Sparsity and Dynamic Activation Sparsity 79
5.6 Flexible Mapping and Scheduling and Intra/Inter-Macro Data Reuse 81
5.7 Energy-Efficient CIM Macro with Dynamic ADC Power-Off 85
5.8 Chip Measurement Results and Comparison 88
5.9 Summary of This Chapter 92
References 93
6 A “Digital+CIM” Processor Supporting Large-Scale NN Models 95
6.1 Introduction 95
6.2 The Challenges of System-Level CIM Chips to Support Large-Scale NN Models 95
6.3 “Digital+CIM” NN Processor STICKER-IM2 97
6.4 Set-Associate Block-Wise Sparse Zero-Skipping Circuits 98
6.5 Ping-Pong CIM and Weight Update Architecture 100
6.6 Ping-Pong CIM Macro with Dynamic ADC Precision 103
6.7 Chip Measurement Results and Comparison 104
6.8 Summary of This Chapter 112
References 112
7 Summary and Prospect 115
7.1 Summary of This Book 115
7.2 Prospect of This Book 117

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网