您好,欢迎来到聚文网。 登录 免费注册
线性代数(第6版)(英文版)

线性代数(第6版)(英文版)

  • 出版社: 清华大学
  • 作者: (美)吉尔伯特·斯特朗|
  • 商品条码: 9787302668077
  • 版次: 1
  • 开本: 16开
  • 页数: 430
  • 出版年份: 2024
  • 印次: 1
定价:¥108 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书内容包括行列式、 矩阵、线性方程组与向量、 矩阵的特征值与特征向量、 二次型及Mathematica软件 的应用等。每章都配有习题 ,书后给出了习题答案。本 书在编写中力求重点突出、 由浅入深、通俗易懂,努力 体现教学的适用性。本书可 作为高等院校工科专业的学 生的教材,也可作为其他非 数学类本科专业学生的教材 或教学参考书
目录
1 Vectors and Matrices 1.1 Vectors and Linear Combinations 1.2 Lengths and Angles from Dot Products 1.3 Matrices and Their Column Spaces 1.4 Matrix Multiplication AB and CR 2 Solving Linear Equations Ax=b 2.1 Elimination and Back Substitution 2.2 Elimination Matrices and Inverse Matrices 2.3 Matrix Computations and A=LU 2.4 Permutations and Transposes 2.5 Derivatives and Finite Difference Matrices 3 The Four Fundamental Subspaces 3.1 Vector Spaces and Subspaces 3.2 Computing the Nullspace by Elimination: A=CR 3.3 The Complete Solution to Ax=b 3.4 Independence, Basis, and Dimension 3.5 Dimensions of the Four Subspaces 4 Orthogonality 4.1 Orthogonality of Vectors and Subspaces 4.2 Projections onto Lines and Subspaces 4.3 Least Squares Approximations 4.4 Orthonormal Bases and Gram-Schmidt 4.5 The Pseudoinverse of a Matrix 5 Determinants 5.1 3 by 3 Determinants and Cofactors 5.2 Computing and Using Determinants 5.3 Areas and Volumes by Determinants 6 Eigenvalues and Eigenvectors 6.1 Introduction to Eigenvalues: Ax=Xx 6.2 Diagonalizing a Matrix 6.3 Symmetric Positive Definite Matrices 6.4 Complex Numbers and Vectors and Matrices 6.5 Solving Linear Differential Equations 7 The Singular Value Decomposition (SVD) 7.1 Singular Values and Singular Vectors 7.2 Image Processing by Lincar Algebra 7.3 Principal Component Analysis (PCA by the SVD) 8 Linear Transformations 8.1 The Idea of a Linear Transformation 8.2 The Matrix of a Linear Transformation 8.3 The Search for a Good Basis 9 Linear Algebra in Optimization 9.1 Minimizing a Multivariable Function 9.2 Backpropagation and Stochastic Gradient Descent 9.3 Constraints, Lagrange Multipliers, Minimum Norms 9.4 Linear Programming, Game Theory, and Duality 10 Learning from Data 10.1 Piecewise Linear Learning Functions 10.2 Creating and Experimenting 10.3 Mean, Variance, and Covariance Appendix 1 The Ranks of AB and A+ B due i Appendix 2 Matrix Factorizations Appendix 3 Counting Parameters in the Basic Factorizations Appendix 4 Codes and Algorithms for Numerical Linear Algebra Appendix 5 The Jordan Form of a Square Matrix Appendix 6 Tensors Appendix 7 The Condition Number of a Matrix Problem Appendix 8 Markov Matrices and Perron-Frobenius Appendix 9 Elimination and Factorization Appendix 10 Computer Graphics Index of Equations Index of Notations Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网