您好,欢迎来到聚文网。 登录 免费注册
高机动仿生机器鱼设计与控制技术

高机动仿生机器鱼设计与控制技术

  • 字数: 391000
  • 装帧: 精装
  • 出版社: 华中科技大学出版社
  • 作者: 喻俊志,谭民  著
  • 商品条码: 9787568053365
  • 版次: 1
  • 开本: 16开
  • 页数: 203
定价:¥198 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书围绕仿生机器鱼的高机动运动,结合仿生技术和智能控制方法,对仿生机器鱼的研制过程和机动控制进行了系统阐述,主要包括六方面内容:仿生鱼体波及鱼体形态学设计、机器鱼二维高机动精准控制、基于仿生CPG的机器鱼运动控制、机器鱼的三维机动转向控制、机器海豚俯仰及滚翻控制、机器海豚跃水运动控制。本书的每一章对所用机器鱼及机器海豚的平台研制、算法实现及实验验证均进行了详细介绍。各部分的内容既相互联系又相互独立,读者可根据自己的需要选择学习。
目录
1 Introduction1
1.1 Introduction1
1.2 Hydrodynamic Modeling and Testing3
1.2.1 Hydrodynamic Modeling4
1.2.2 Hydrodynamic Experimental Techniques5
1.3 Kinematic Modeling and Control8
1.3.1 Kinematic Measurement of Fish Swimming8
1.3.2 Motion Control9
1.4 Learning Control and Motion Optimization11
1.4.1 Learning Fishlike Swimming11
1.4.2 Motion Optimization13
1.5 Coordination14
1.5.1 AFSA15
1.5.2 Coordinated Control of Multiple Robotic Fish16
1.6 Concluding Remarks18
References19
2 Bioinspired Fish Body Wave Model Considering Linear Density25
2.1 Introduction25
2.2 Problem Formulation27
2.2.1 An Overview of Fish Body Wave27
2.2.2 Necessary Conditions of Steady Swimming28
2.3 Design of Body Wave Considering Linear Density29
2.4 Design of Fish Morphology: Two Cases Studies32
2.4.1 Design of Main Body32
2.4.2 Formation of Caudal Fin and Its Counterpart35
2.4.3 Formation of Pectoral Fin and Its Counterpart36
2.4.4 Formation of Pelvic Fin and Its Counterpart36
2.5 Simulation and Result Analysis37
2.6 Discussion42
2.7 Concluding Remarks43
References43
3 Implementing Flexible and Fast Turning Maneuvers of Multijoint Robotic Fish47
3.1 Introduction47
3.2 Analysis and Control of C-Start49
3.2.1 Design of Stage150
3.2.2 Design of Stage253
3.2.3 Design of Stage355
3.2.4 Closed-Loop Control of the Turning Angle56
3.3 Experiments and Results58
3.3.1 Experimental Setup58
3.3.2 Experiments on the Blunt Fish60
3.3.3 Experiments on the Slim Fish63
3.4 Discussion66
3.5 Concluding Remarks67
References68
4 CPG-Based Swimming Control71
4.1 Introduction71
4.2 Overview of Robotic Fish Prototype73
4.2.1 Mechatronic Design73
4.2.2 Swimming Gaits Design 75
4.2.3 Hardware and Software Design of the Controller75
4.3 Design of a Two-Phase Control System77
4.3.1 A Two-Phase CPG Control Architecture77
4.3.2 CPG Model78
4.3.3 Lower Reflex Model79
4.3.4 Medium Sensory Feedback Model81
4.3.5 High Hierarchical Feedback Control Model83
4.4 FSM-Based Gait Transition85
4.5 Swimming Performance Optimization87
4.5.1 Swimming Performance Indicators87
4.5.2 Performance Under Consistent Phase Differences88
4.5.3 Performance Under Inconsistent Phase Differences90
4.6 Test Results Analysis91
4.7 Discussion94
4.8 Conclusion and Remark97
References98
5 3D Maneuvering Control of a Robotic Fish101
5.1 Introduction101
5.2 Mechatronic Design of the Updated Robotic Fish102
5.2.1 Head Design103
5.2.2 Pectoral Fins104
5.2.3 Multilink Propulsive Mechanism105
5.3 Analysis and Control of 3D Maneuvers106
5.3.1 CPG Network106
5.3.2 Rotational Maneuvers108
5.3.3 Translational Maneuvers112
5.3.4 Head Motion Control113
5.4 Experiments and Discussion114
5.4.1 Testing of Rotational Maneuvers114
5.4.2 Testing of Backward Swimming116
5.5 Discussion117
5.6 Concluding Remarks119
References120
6 Control of Yaw and Pitch Maneuvers of a Multilink Dolphin Robot123
6.1 Introduction123
6.2 Overview of the Dolphin Robot125
6.3 Analysis and Control of Yaw Turn127
6.3.1 Analysis of Yaw Turn127
6.3.2 A Two-Segment Model for Yaw Turns127
6.4 Analysis and Control of Pitch Turn128
6.4.1 Analysis of Pitch Turn128
6.4.2 Design of the Unbending Phase129
6.4.3 Maintaining the Pitch Angle132
6.5 Results and Discussions134
6.5.1 Experimental Setup134
6.5.2 Testing of Yaw Turns135
6.5.3 Testing of Wide-Range Pitch Turns136
6.6 Discussion145
6.7 Concluding Remarks147
References147
7 Leaping Control of Self-propelled Robotic Dolphin149
7.1 Introduction149
7.2 Theoretical Analysis of Dolphin Leaping Motion151
7.3 Motion Control of Leaping Robotic Dolphin154
7.3.1 Prototype of Leaping Robotic Dolphin155
7.3.2 AoA-Based Speed Control158
7.3.3 Pitch Control162
7.3.4 Roll Control164
7.3.5 Yaw Control164
7.3.6 Depth Control165
7.4 Experiments and Results165
7.4.1 Speed Tests165
7.4.2 Leap Tests167
7.5 Discussion169
7.6 Concluding Remarks170
References171
8 Motion Control of Self-propelled Robotic Jellyfish173
8.1 Introduction173
8.2 Prototype of the Self-propelled Robotic Jellyfish174
8.2.1 Mechanical Design174
8.2.2 Analysis for Barycenter Adjustment Mechanism of the Robotic Jellyfish178
8.2.3 Dynamic Analysis181
8.3 Reinforcement Learning Based Attitude Control184
8.3.1 A Brief Introduction of Reinforcement Learning185
8.3.2 Attitude Control of the Robotic Jellyfish186
8.4 Experiments and Results191
8.5 Discussion194
8.6 Concluding Remarks 195
References196
9 Summary and Outlook197
9.1 Technical Contributions197
9.2 Future Studies200
Index203

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网