朱南丽博士,在《Journal of Networks》等期刊上发表专业论文18篇,。主持或参与国家、省部及各级项目16项。Norbert A’Campo,瑞士数学家,于1972年获得法国巴黎大学博士学位。1974年,他成为国际数学家大会特邀讲者。 1988年当选瑞士数学学会主席,2012年入选美国数学学会。
目录
1 Introduction
2 Basic Differential Geometry
2.1 Fields on open sets in real vector spaces
2.2 Closed forms are locally exact
2.3 Fixed Point Theorems
2.4 The abstract field C versus the R-algebra C of complex numbers
2.5 Coordinates and local smooth Rigidity Theorems
2.6 Differentiation in Banaeh spaces
2.7 Sard's Theorem
2.8 Morse Lemma, Morse functions
3 Geometry of Manifolds
3.1 Differential manifolds
3.2 Fields on manifolds
3.3 Integrability condition of Frobenius
3.4 Foliations on manifolds
3.5 Topology of connected, compact surfaces
4 Hyperbolic Geometry
4.1 Hyperbolic plane H=HI
4.2 Intermezzo: Higher Cross Ratios
4.3 Hyperbolic trigonometry
4.4 Hyperbolic Area
4.5 A compact hyperbolic surface of genus g ≥2
4.6 The Riemann Sphere □(数理化公式)
5 Examples of Geometry
5.1 The Space of Norms
5.2 Combinatorial Geometry
5.3 Spaces of Involutions
6 Differential Topology of Surfaces
6.1 o-and 1-deRham cohomology of surfaces
6.2 Hyperbolic plane again, now H=HJ
6.3 Reminder: Multi-Linear Algebra
6.4 Reminder: Holomorphie functions in one complex variable
6.5 J-Laplace operator and metric
6.6 J-surfaces
7 Riemann Surfaces
7.1 Riemann surfaces as z- and as J -surface
7.2 Natural structures on the space ~(TS)
7.3 J-fields and Integrability in higher dimension
7.4 Integrability of fibred J-fields
7.5 Analysis of Laplace operators on J -surfaces
7.6 Topology of the two point Green function
8 Differential Geometry in Economics and Finance
8.1 SABR model
8.2 Geometry of no arbitrage
9 Conformal Geometry in Economics and Finance
9.1 Models with Zero Instantaneous Spot Rate
9.2 Conformal Symmetries and Lorentz Transformations
9.3 Conformal Diffusion
9.4 Time Homogeneity and Hyperbolic (Lorentz) Evolution
9.5 The Conformal Model under Stochastic Clock
References
后记 ( Postscript )