您好,欢迎来到聚文网。 登录 免费注册
线性代数与矩阵:第二教程(影印版)

线性代数与矩阵:第二教程(影印版)

  • 字数: 571000
  • 装帧: 精装
  • 出版社: 高等教育出版社
  • 作者: (美)海伦·夏皮罗
  • 出版日期: 2022-02-01
  • 商品条码: 9787040570311
  • 版次: 1
  • 开本: 16开
  • 页数: 317
  • 出版年份: 2022
定价:¥135 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
线性代数和矩阵理论是几乎每个数学领域(纯粹数学和应用数学)的基本工具。本书内容涵盖了核心主题,同时介绍了线性代数在其中扮演关键角色的一些领域,例如区组设计、有向图、纠错码和线性动力系统。本书具有以下特色:讨论了Weyr特征和Weyr典范形,以及它们与更有名的,Jordan典范形的关系;利用块循环矩阵和有向图来证明非负不可约矩阵的特征值结构上的Frobenius定理;包含平衡不接近区组设计(BIBDs)、Hadamard矩阵和强正则图等组合论题。此外本书还介绍了P-矩阵的McCoy定理、关于区组设计存在性的Bruck-Ryser-Chowla定理以及马尔可夫链。本书是为熟悉线性代数第一教程知识、有兴趣学习更高级内容的读者编写的。
目录
Preface
Note to the Reader
Chapter 1.Preliminaries
1.1.Vector Spaces
1.2.Bases and Coordinates
1.3.Linear Transformations
1.4.Matrices
1.5.The Matrix of a Linear Transformation
1.6.Change of Basis and Similarity
1.7.Transposes
1.8.Special Types of Matrices
1.9.Submatrices, Partitioned Matrices, and Block Multiplication
1.10.Invariant Subspaces
1.11.Determinants
1.12.Tensor Products
Exercises
Chapter 2.Inner Product Spaces and Orthogonality
2.1.The Inner Product
2.2.Length, Orthogonality, and Projection onto a Line
2.3.Inner Products in C”
2.4.Orthogonal Complements and Projection onto a Subspace
2.5.Hilbert Spaces and Fourier Series
2.6.Unitary Tranformations
2.7.The Gram-Schmidt Process and QR Factorization
2.8.Linear Functionals and the Dual Space
Exercises
Chapter 3.Eigenvalues, Eigenvectors, Diagonalization, and Triangularization
3.1.Eigenvalues
3.2.Algebraic and Geometric Multiplicity
3.3.Diagonalizability
3.4.A Triangularization Theorem
3.5.The Gersgorin Circle Theorem
3.6.More about the Characteristic Polynomial
3.7.Eigenvalues of AB and BA
Exercises
Chapter 4.The Jordan and Weyr Canonical Forms
4.1.A Theorem of Sylvester and Reduction to Block Diagonal Form
4.2.Nilpotent Matrices
4.3.The Jordan Form of a General Matrix
4.4.The Cayley-Hamilton Theorem and the Minimal Polynomial
4.5.Weyr Normal Form
Exercises
Chapter 5.Unitary Similarity and Normal Matrices
5.1.Unitary Similarity
5.2.Normal Matrices—the Spectral Theorem
5.3.More about Normal Matrices
5.4.Conditions for Unitary Similarity
Exercises
Chapter 6.Hermitian Matrices
6.1.Conjugate Bilinear Forms
6.2.Properties of Hermitian Matrices and Inertia
6.3.The Rayleigh-Ritz Ratio and the Courant-Fischer Theorem
6.4.Cauchy's Interlacing Theorem and Other Eigenvalue Inequalities
6.5.Positive Definite Matrices
6.6.Simultaneous Row and Column Operations
6.7.Hadamard's Determinant Inequality
6.8.Polar Factorization and Singular Value Decomposition
Exercises
Chapter 7.Vector and Matrix Norms
7.1.Vector Norms
7.2.Matrix Norms
Exercises
Chapter 8.Some Matrix Factorizations
8.1.Singular Value Decomposition
8.2.Householder Transformations
8.3.Using Householder Transformations to Get Triangular, Hessenberg, and Tridiagonal Forms
8.4.Some Methods for Computing Eigenvalues
8.5.LDU Factorization
Exercises
Chapter 9.Field of Values
9.1.Basic Properties of the Field of Values
9.2.The Field of Values for Two-by-Two Matrices
9.3.Convexity of the Numerical Range
Exercises
Chapter 10.Simultaneous Triangularization
10.1.Invariant Subspaces and Block Triangularization
10.2.Simultaneous Triangularization, Property P, and Commutativity
10.3.Algebras, Ideals, and Nilpotent Ideals
10.4.McCoy's Theorem
10.5.Property L
Exercises
Chapter 11.Circulant and Block Cycle Matrices
11.1.The J Matrix
11.2.Circulant Matrices
11.3.Block Cycle Matrices
Exercises
Chapter 12.Matrices of Zeros and Ones
12.1.Introduction: Adjacency Matrices and Incidence Matrices
12.2.Basic Facts about (0, 1)-Matrices
12.3.The Minimax Theorem of K?nig and Egerváry
12.4.SDRs, a Theorem of P.Hall, and Permanents
12.5.Doubly Stochastic Matrices and Birkhoff's Theorem
12.6.A Theorem of Ryser
Exercises
Chapter 13.Block Designs
13.1.t-Designs
13.2.Incidence Matrices for 2-Designs
13.3.Finite Projective Planes
13.4.Quadratic Forms and the Witt Cancellation Theorem
13.5.The Bruck-Ryser-Chowla Theorem
Exercises
Chapter 14.Hadamard Matrices
14.1.Introduction
14.2.The Quadratic Residue Matrix and Paley's Theorem
14.3.Results of Williamson
14.4.Hadamard Matrices and Block Designs
14.5.A Determinant Inequality, Revisited
Exercises
Chapter 15.Graphs
15.1.Definitions
15.2.Graphs and Matrices
15.3.Walks and Cycles
15.4.Graphs and Eigenvalues

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网