您好,欢迎来到聚文网。 登录 免费注册
生命线工程系统 网络可靠性分析与抗震设计

生命线工程系统 网络可靠性分析与抗震设计

  • 字数: 297000
  • 装帧: 精装
  • 出版社: 上海科学技术出版社
  • 作者: 李杰,刘威
  • 出版日期: 2021-09-01
  • 商品条码: 9787547854167
  • 版次: 1
  • 开本: 16开
  • 页数: 220
  • 出版年份: 2021
定价:¥265 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书全面介绍了生命线系统网络分析和抗震设计的相关内容和近期新研究进展,突破了传统研究思路中重结构轻网络、重连通轻功能、重分析轻设计的问题,构建了从结构分析到网络功能分析再到网络设计的研究思路,在国际上首次实现了生命线工程网络连通可靠度的高效准确的递推分解算法、地震下带渗漏工作供水网络功能可靠度的精细化分析方法、生命线工程网络抗震优化设计以及复合生命线网络建模和仿真。研究成果对于生命线工程领域的研究和工程应用具有重要意义。利用上述理论研究成果,进行了上海、沈阳、郑州等多个大型城市供水、供气和电力系统的抗震分析和设计工作。同时,汶川地震后,成果应用于四川省都江堰、绵竹等多个受灾城市的震后恢复重建之中,得到了相关单位的高度评价。
目录
1 Introduction
1.1 Lifeline Engineering Systems
1.2 Damages of Lifeline Systems in Past Earthquakes
1.3 Main Content of the Book
References
2 Seismic Hazard Assessment
2.1 Introduction
2.2 Uncertainty and Probability Model
2.2.1 Earthquake Occurrence Probability Model
2.2.2 Potential Seismic Zone
2.2.3 Probability Distribution Function of Earthquake Magnitude
2.2.4 Ground Motion Attenuation
2.3 Seismic Hazard Analysis Method
2.3.1 Point-Source Model
2.3.2 Line-Source Model
2.3.3 Area-Source Model
2.3.4 Probability Distribution Function of Ground Motion Amplitude
References
3 Seismic Ground Motion Model
3.1 Introduction
3.2 Statistically-Based Model
3.2.1 Stationary and Non-stationary Processes
3.2.2 One-Dimensional Stochastic Process Model
3.2.3 Random Field Model
3.3 Physically-Based Model
3.3.1 Fourier Spectral Form of One-Dimensional Ground Motion
3.3.2 Seismic Source Spectrum
3.3.3 Transfer Function of the Path
3.3.4 Local Site Effect
3.3.5 One-Dimensional Ground Motion Model
3.3.6 Physical Random Field Model of Ground Motions
References
4 Seismic Performance Evaluation of Buried Pipelines
4.1 Seismic Damage of Buried Pipelines
4.1.1 Pipeline Damage in Past Earthquakes
4.1.2 Damage Characteristics of Buried Pipelines
4.1.3 Factors Affecting Buried Pipeline Damages
4.1.4 Empirical Statistics of Damage Ratio
4.2 Seismic Response Analysis of Buried Pipelines
4.2.1 Pseudo-static Analysis Method
4.2.2 Pipeline Stress Computation
4.3 Seismic Response Analysis of Pipeline Networks
4.4 Seismic Reliability Evaluation of Buried Pipeline
4.4.1 Uncertainty of Pipeline Resistance
4.4.2 Seismic Reliability Analysis of Buried Pipelines
References
5 Seismic Response Analysis of Structures
5.1 Structural Analysis Model
5.1.1 General Finite Element Model
5.1.2 Seismic Analysis Model of Structure-Equipment Systems
5.1.3 Dynamic Analysis Model of Structure Subject to Multi-point Ground Motions
5.2 Deterministic Seismic Response Analysis of Structures
5.2.1 Linear Acceleration Algorithm
5.2.2 Generalized u-Algorithm
5.3 Stochastic Seismic Response Analysis of Structures
5.3.1 Principle of Preservation of Probability
5.3.2 The Generalized Probability Density Evolution Equation
5.3.3 Numerical Method for Solving General Probability Density Evolution Equation
5.4 Seismic Reliability Analysis of Structures
References
6 Seismic Reliability Analysis of Engineering Network(I)--Connectivity Reliability
6.1 Introduction
6.2 Foundation of System Reliability Analysis
6.2.1 Basic Concepts of Graph Theory
6.2.2 Structural Function of Network Systems
6.2.3 Reliability of Simple Network System
6.3 Minimal Path Algorithm
6.3.1 Adjacent Matrix Algorithm
6.3.2 Depth First Search Algorithm
6.3.3 Breadth First Search Algorithm
6.4 Disjoint Minimal Path Algorithm
6.4.1 Reliability Evaluation of Network System and Its Complexity
6.4.2 Disjoint Minimal Path Algorithm
6.4.3 Reliability Analysis Based on DMP Algorithm
6.5 Recursive Decomposition Algorithm
6.5.1 Related Theorems
6.5.2 RDA for Edge-Weighted Network
6.5.3 RDA for Node-Weighted Network
6.6 Cut-Based Recursive Decomposition Algorithm
6.6.1 Minimal Cut Searching Algorithm
6.6.2 Cut-Based Recursive Decomposition Algorithm
6.7 Reliability Analysis of Network with Dependent Failure
6.8 Monte Carlo Simulation Method
References
7 Seismic Reliability Analysis of Engineering Network (II)--The Functional Reliability
7.1 Introduction
7.2 Functional Analysis of Water Supply Network
7.3 Functional Analysis of Water Supply Network with Leakage
7.3.1 Hydraulic equation of water supply network with leakage
7.3.2 Analysis method
7.4 Seismic Functional Reliability Analysis of Water Supply Network
References
8 Aseismic Optimal Design ofLifeline Networks
8.1 Introduction
8.2 Network Topology Optimization Based on Connectivity Reliability
8.2.1 Topology Optimization Model
8.2.2 Genetic Algorithm
8.2.3 Examples
8.3 Topology Optimization of Water Supply Network
8.3.1 Optimization Model
8.3.2 Algorithms for Seismic Topology Optimization
8.3.3 EXamples
References
9 Simulation and Control of Composite Lifeline System
9.1 Introduction
9.2 Disaster Response Simulation ofComposite Lifeline System
9.2.1 Fundamentals of Discrete Event Dynamic Simulation
9.2.2 Simulation of Composite Lifeline Engineering System
9.2.3 Disaster Simulation Model of Composite Lifeline System
9.2.4 Simulation Convergence Criteria and Simulation Statistics
9.3 Petri Net Model for Disaster Simulation of Composite Lifeline System
9.3.1 Classic Petri Net
9.3.2 Non-Autonomous Colored Petri Net
9.3.3 Seismic Disaster Simulation of Composite Lifeline System
9.4 Case Study on Seismic Disaster Simulation
9.5 Urban Earthquake Disaster Field Control
9.5.1 System ControlBased on Structural Behavior
9.5.2 System Control Based on Investment Behavior
9.5.3 Case Study
References
Appendix A: Boolean Algebra Basic
Appendix B: Seismic Reliability Analysis of Transformer Substation
Appendix C: Seismic Secondary Fire Analysis
Bibliography

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网