您好,欢迎来到聚文网。 登录 免费注册
探索数学--吸引人的证明方式(英文)/国外优秀数学著作原版系列

探索数学--吸引人的证明方式(英文)/国外优秀数学著作原版系列

  • 字数: 519000
  • 装帧: 平装
  • 出版社: 哈尔滨工业大学出版社
  • 作者: (美)约翰·迈耶(John Meier),(美)德里克·史密斯(Derek Smith)著
  • 出版日期: 2021-01-01
  • 商品条码: 9787560391724
  • 版次: 1
  • 开本: 16开
  • 页数: 0
  • 出版年份: 2021
定价:¥58 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书致力于在主动学习和死记硬背之间取得平衡,以数学问题为中心,向读者介绍了该领域的各个方面。通过探索定义,形成猜想并编写证明,使读者在做数学题的过程中,开始了解该学科。全书共分十一章,主要介绍了集合、整数与算术的基本定理、函数、计数、实数、概率与随机等相关内容,每章结尾都有一系列练习,其中大多数练习都是为了检验读者的理解能力,或者作为引出例子的工具。本书可供大学生在一年级和二年级学习时使用,也可供那些想要简单了解理论数学的独立读者参考使用。
目录
Preface
1 Let's Play!
1.1 A Direct Approach
1.2 Fibonacci Numbers and the Golden Ratio
1.3 Inductive Reasoning
1.4 Natural Numbers and Divisibility
1.5 The Primes
1.6 The Integers
1.7 The Rationals, the Reals, and the Square Root of 2
1.8 End-of-Chapter Exercises
2 Discovering and Presenting Mathematics
2.1 Truth, Tabulated
2.2 Valid Arguments and Direct Proofs
2.3 Proofs by Contradiction
2.4 Converse and Contrapositive
2.5 Quantifiers
2.6 Induction
2.7 Ubiquitous Terminology
2.8 The Process of Doing Mathematics
2.9 Writing Up Your Mathematics
2.10 End-of-Chapter Exercises
3 Sets
3.1 Set Builder Notation
3.2 Sizes and Subsets
3.3 Union, Intersection, Difference, and Complement
3.4 Many Laws and a Few Proofs
3.5 Indexing
3.6 Cartesian Product
3.7 Power
3.8 Counting Subsets
3.9 A Curious Set
3.10 End-of-Chapter Exercises
4 The Integers and the Fundamental Theorem of Arithmetic
4.1 The Well-Ordering Principle and Criminals
4.2 Integer Combinations and Relatively Prime Integers
4.3 The Fundamental Theorem of Arithmetic
4.4 LCM and GCD
4.5 Numbers and Closure
4.6 End-of-Chapter Exercises
5 Functions
5.1 What is a Function?
5.2 Domain, Codomain, and Range
5.3 Injective, Surjective, and Bijective
5.4 Composition
5.5 What is a Function? Redux!
5.6 Inverse Functions
5.7 Functions and Subsets
5.8 A Few Facts About Functions and Subsets
5.9 End-of-Chapter Exercises
6 Relations
6.1 Introduction to Relations
6.2 Partial Orders
6.3 Equivalence Relations
6.4 Modulo m
6.5 Modular Arithmetic
6.6 Invertible Elements
6.7 End-of-Chapter Exercises
7 Cardinality
7.1 The Hilbert Hotel, Count von Count, and Cookie Monster
7.2 Cardinality
7.3 Countability
7.4 Key Countability Lemmas
7.5 Not Every Set is Countable
7.6 Using the SchriSder-Bemstein Theorem
7.7 End-of-Chapter Exercises
8 The Real Numbers
8.1 Completeness
8.2 The Archimedean Property
8.3 Sequences of Real Numbers
8.4 Geometric Series
8.5 The Monotone Convergence Theorem
8.6 Famous Irrationals
8.7 End-of-Chapter Exercises
9 Probability and Randomness
9.1 A Class of Lyin' Weasels
9.2 Probability
9.3 Revisiting Combinations
9.4 Events and Random Variables
9.5 Expected "Value
9.6 Flipped or Faked?
9.7 End-of-Chapter Exercises
10 Algebra and Symmetry
10.1 An Example from Modular Arithmetic
10.2 The Symmetries of a Square
10.3 Group Theory
10.4 Cayley Tables
10.5 Group Properties
10.6 Isomorphism
10.7 Isomorphism and Group Properties
10.8 Examples of Isomorphic and Non-isomorphic Groups
10.9 End-of-Chapter Exercises
11 Projects
11.1 The Pythagorean Theorem
11.2 Chomp and the Divisor Game
11.3 Arithmetic-Geometric Mean Inequality
11.4 Complex Numbers and the Gaussian Integers
11.5 Pigeons !
11.6 Mirsky's Theorem
11.7 Euler's Totient Function
11.8 Proving the Schr6der-Bernstein Theorem
11.9 Cauchy Sequences and the Real Numbers
11.10 The Cantor Set
11.11 Five Groups of Order 8
Solutions, Answers, or Hints to In-Text Exercises
Bibliography
Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网