您好,欢迎来到聚文网。
登录
免费注册
网站首页
|
联系客服
|
搜索
热搜:
购物车
0
我的订单
商品分类
首页
幼儿
文学
社科
教辅
生活
销量榜
空间有向几何学(下)
字数: 410000
装帧: 平装
出版社: 科学出版社
作者: 喻德生
出版日期: 2020-08-01
商品条码: 9787030658562
版次: 1
开本: 16开
页数: 324
出版年份: 2020
定价:
¥128
销售价:
登录后查看价格
¥{{selectedSku?.salePrice}}
库存:
{{selectedSku?.stock}}
库存充足
{{item.title}}:
{{its.name}}
加入购物车
立即购买
收藏
上架到店铺
×
Close
上架到店铺
{{shop.name}}
点此去绑定店铺
精选
¥5.83
世界图书名著昆虫记绿野仙踪木偶奇遇记儿童书籍彩图注音版
¥5.39
正版世界名著文学小说名家名译中学生课外阅读书籍图书批发 70册
¥8.58
简笔画10000例加厚版2-6岁幼儿童涂色本涂鸦本绘画本填色书正版
¥5.83
世界文学名著全49册中小学生青少年课外书籍文学小说批发正版
¥4.95
全优冲刺100分测试卷一二三四五六年级上下册语文数学英语模拟卷
¥8.69
父与子彩图注音完整版小学生图书批发儿童课外阅读书籍正版1册
¥24.2
好玩的洞洞拉拉书0-3岁宝宝早教益智游戏书机关立体翻翻书4册
¥7.15
幼儿认字识字大王3000字幼儿园中班大班学前班宝宝早教启蒙书
¥11.55
用思维导图读懂儿童心理学培养情绪管理与性格培养故事指导书
¥19.8
少年读漫画鬼谷子全6册在漫画中学国学小学生课外阅读书籍正版
¥64
科学真好玩
¥12.7
一年级下4册·读读童谣和儿歌
¥38.4
原生态新生代(传统木版年画的当代传承国际研讨会论文集)
¥11.14
法国经典中篇小说
¥11.32
上海的狐步舞--穆时英(中国现代文学馆馆藏初版本经典)
¥22.05
猫的摇篮(精)
¥30.72
幼儿园特色课程实施方案/幼儿园生命成长启蒙教育课程丛书
¥24.94
旧时风物(精)
¥12.04
三希堂三帖/墨林珍赏
¥6.88
寒山子庞居士诗帖/墨林珍赏
¥6.88
苕溪帖/墨林珍赏
¥6.88
楷书王维诗卷/墨林珍赏
¥9.46
兰亭序/墨林珍赏
¥7.74
祭侄文稿/墨林珍赏
¥7.74
蜀素帖/墨林珍赏
¥12.04
真草千字文/墨林珍赏
¥114.4
进宴仪轨(精)/中国古代舞乐域外图书
¥24.94
舞蹈音乐的基础理论与应用
内容简介
《空间有向几何学(下)》是“空间有向几何学”系列成果之二。在平面“有向几何学”系列等研究的基础上,创造性地、广泛地运用有向距离和有向距离定值法,对与空间平面多边形有向面积有关的一些问题进行更深入、系统的研究,得到了一系列点到平面间有向距离的定值定理,揭示了这些定理与经典数学问题、数学定理和一些数学竞赛题之间的联系,较系统、深入地阐述了空间有向距离与有向面积的基本理论、基本思想和基本方法。它对开拓数学的研究领域,揭示事物之间本质的联系,探索数学研究的思想方法具有重要的理论意义;对丰富几何学各学科,以及相关数学学科的教学内容,促进大、中学数学教学内容改革具有重要的现实意义;此外,有向几何学的研究成果和研究方法,对数学定理的机械化证明也具有重要的应用和参考价值。
作者简介
喻德生,江西高安人.1980年步入教坛,1990年江西师范大学数学系硕士研究生毕业,获理学硕士学位。南昌航空大学数学与信息科学学院教授,硕士研究生导师,江西省第六批中青年骨干教师,中国教育数学学会常务理事,《数学研究期刊》编委,南昌航空大学省精品课程《高等数学》负责人,教育部学位与研究生教育发展中心学位论文评审专家,江西省第二届青年教师讲课比赛评委,研究生数学建模竞赛论文评审专家。历任大学数学教研部主任等职。指导硕士研究生12人。主要从事几何学、计算机辅助几何设计和数学教育等方面的研究。参与国家自然科学基金课题3项,主持或参与省部级教学科研课题10项、厅局级教学科研课题11项。在国内外学术刊物发表论文60余篇,撰写专著2部,主编出版教材10种16个版本。作为主持人获江西省优秀教学成果奖2项,指导学生参加全国数学建模竞赛获省级一等奖及以上奖励4项并获江西省优秀教学成果荣誉2项,南昌航空工业学院优秀教学成果奖4项,获校级优秀教师2次。Email:yudsl7@163.com
目录
前言
第1章空间平面多边形有向面积在坐标面上的投影与应用1
1.1空间平面多边形有向面积在坐标面上的投影1
1.1.1空间平面多边形有向面积在坐标面上投影的概念1
1.1.2空间平面多边形有向面积在坐标面上投影的几个公式2
1.2空间平面多边形有向面积在坐标面上投影的应用7
1.2.1空间三角形有向面积投影在数学竞赛题求解中的应用8
1.2.2空间平面多边形有向面积投影在数学竞赛题证明中的应用11
1.3空间点到直线间有向距离与应用13
1.3.1空间点到直线间距离的概念、公式与应用13
1.3.2空间点到直线间有向距离的概念、公式与应用18
第2章三角形面投影式方程和两有向平面间的夹角与应用21
2.1三角形面投影式方程的基本概念与简单应用21
2.1.1三角形面投影式方程的基本概念21
2.1.2长方体对棱面有向距离的定值定理25
2.1.3长方体对角棱面有向距离定值定理的应用31
2.2二面角和两有向平面间夹角的概念与公式32
2.2.1二面角的基本概念与性质32
2.2.2两有向平面夹角的概念与性质33
2.2.3二面角和两有向平面夹角的公式34
2.3二面角和两有向平面夹角公式的应用38
2.3.1二面角和两有向平面夹角公式在数学竞赛题求解中的应用39
2.3.2两有向平面垂直、平行的条件与应用42
2.4二面角和两有向平面夹角的等分面与应用44
2.4.1二面角和两有向平面夹角等分面的概念与性质44
2.4.2二面角与两有向平面夹角平分面定理的应用49
第3章多面角平分面有向距离的定值定理与应用56
3.1三面角平分面有向距离的定值定理与应用56
3.1.1三面角的基本概念56
3.1.2三面角内角平分面有向距离的定值定理及其应用57
3.1.3三面角内、外角平分面有向距离的定值定理及其应用60
3.2四面体内角平分面有向距离的定值定理与应用66
3.2.1四面体内角平分面的基本概念67
3.2.2四面体内角平分面有向距离的定值定理67
3.2.3四面体内角平分面有向距离的定值定理的应用69
3.2.4四面体四内角平分面有向距离的定值定理及其应用72
3.3四面体内、外角平分面有向距离的定值定理与应用77
3.3.1四面体外角平分面的基本概念78
3.3.2四面体内、外角平分面有向距离的定值定理78
3.3.3四面体内、外角平分面有向距离定值定理的应用81
3.4四面体四内、外角平分面有向距离的定值定理与应用90
3.4.1四面体双内、外角平分面有向距离的定值定理及其应用91
3.4.2四面体四外角平分面有向距离的定值定理及其应用97
3.5多面角内角平分面有向距离的定值定理与应用100
3.5.1多面角内、外平分面的基本概念101
3.5.2多面角内角平分面有向距离的定值定理及其应用101
3.5.3n棱锥内角平分面有向距离的定值定理及其应用105
3.6共线三点到平面有向距离的线性性质与应用107
3.6.1点到平面有向距离的线性性质107
3.6.2四面体内角平分位线上的点到其各面有向距离的定值定理与应用108
3.6.3四面体外角平分位线上的点到其各面有向距离的定值定理与应用110
第4章点类平面有向距离的定值定理与应用113
4.1四点类平面有向距离的定值定理与应用113
4.1.1过一点的n点类平面的概念113
4.1.2过一点的四点类平面有向距离的定值定理114
4.1.3过一点的四点类平面有向距离定值定理的应用118
4.2n(n≥5)点类平面有向距离的定值定理与应用127
4.2.1过一点的五点类平面有向距离的定值定理与应用127
4.2.2过一点的一类n(n>4)点类平面有向距离的定值定理与应用133
4.3多面体中点类平面有向距离的定值定理与应用138
4.3.1带脊的拟四边形五面体中点类平面有向距离的定值定理及其应用138
4.3.2四边形六面体中点类平面有向距离的定值定理及其应用147
4.3.3一般多面体中过其顶点的点类平面定值定理的结构152
第5章射线平面有向距离的定值定理与应用154
5.1三射线平面有向距离的定值定理与应用154
5.1.1三射线平面的概念154
5.1.2过一点的三射线平面有向距离的定值定理154
5.1.3过一点的三射线平面有向距离定值定理的应用157
5.23m射线平面有向距离的定值定理与应用168
5.2.1过一点的n射线平面的概念168
5.2.2过一点的3m射线平面有向距离的定值定理169
5.2.3过一点的3m射线平面有向距离定值定理的应用173
5.3四射线点类平面有向距离的定值定理与应用178
5.3.1过一点的n(n≥4)射线点类平面的概念178
5.3.2过一点的四射线点类平面的定值定理178
5.3.3过一点的四射线点类平面定值定理的应用183
5.4n(n>4)射线点类平面有向距离的定值定理与应用185
5.4.1过一点的五射线点类平面的定值定理及其应用185
5.4.2过一点的十二射线点类平面的定值定理及其应用193
第6章多面体棱-棱中点面有向距离的定值定理与应用199
6.1四面体棱-棱中点面有向距离的定值定理与应用199
6.1.1四面体棱-棱中点面的基本概念199
6.1.2四面体棱-棱中点面有向距离的定值定理200
6.1.3四面体棱-棱中点面有向距离定值定理的应用205
6.22n+1棱锥棱-底面对边中点面有向距离的定值定理与应用212
6.2.12n+1棱锥棱-底面对边中点面的基本概念212
6.2.22n+1棱锥棱-底面对边中点面有向距离的定值定理212
6.2.32n+1棱锥棱-底面对边中点面有向距离定值定理的应用216
6.3n棱锥棱-底面对角线中点面有向距离的定值定理与应用220
6.3.1n棱锥棱-底面对角线中点面的基本概念220
6.3.2n棱锥棱-底面对角线中点面有向距离的定值定理220
6.3.3n棱锥棱-底面对角线中点面有向距离定值定理的应用224
6.3.42n+1棱锥底边(对角线)-棱中点面有向距离定值定理的应用227
第7章多面体棱-棱角分点面有向距离的定值定理与应用230
7.1四面体棱-棱内角平分点面有向距离的定值定理与应用230
7.1.1四面体棱-棱内角平分点面的基本概念230
7.1.2四面体棱-棱内角平分点面有向距离的定值定理231
7.1.3四面体棱-棱内角平分点面有向距离定值定理的应用237
7.2四面体棱-棱内、外角平分点面有向距离的定值定理与应用245
7.2.1四面体棱-棱外角平分点面的基本概念246
7.2.2四面体棱内、外角平分点面有向距离的定值定理247
7.2.3四面体棱-棱内、外角平分点面有向距离定值定理的应用254
7.3多棱锥棱-底面对角线角平分点面有向距离的定值定理与应用264
7.3.1多棱锥棱-底面对角线角平分点面的基本概念265
7.3.2多棱锥棱-对角线角平分点面有向距离的定值定理265
7.3.3多棱锥棱-底面对角线角平分点面有向距离定值定理的应用269
第8章多面体中两类三角形面有向距离的定值定理与应用273
8.1四面体棱-棱高足面有向距离的定值定理与应用273
8.1.1四面体棱-棱高足三角形的基本概念273
8.1.2四面体棱-棱高足面有向距离的定值定理274
8.1.3四面体棱-棱高足面有向距离定值定理的应用281
8.2四面体高足到其各面有向距离的关系定理与应用286
8.2.1等腰四面体的概念与性质286
8.2.2四面体高足到各面有向距离的关系定理286
8.2.3四面体高足到其各面有向距离关系定理的应用290
8.3一类六棱锥对侧面中线面有向距离的定值定理与应用292
8.3.12n棱锥对侧面中线面的概念292
8.3.2一类六棱锥对侧面中线面有向距离的定值定理292
8.3.3一类六棱锥对侧面中线面有向距离定值定理的应用296
8.4一类4k+2棱锥对侧面中线面有向距离的定值定理与应用297
8.4.1一类4k+2棱锥对侧面中线面有向距离的定值定理297
8.4.2一类4k+2棱锥对侧面中线面有向距离定值定理的应用302
参考文献305
名词索引308
×
Close
添加到书单
加载中...
点此新建书单
×
Close
新建书单
标题:
简介:
蜀ICP备2024047804号
Copyright 版权所有 © jvwen.com 聚文网