您好,欢迎来到聚文网。
登录
免费注册
网站首页
|
搜索
热搜:
磁力片
|
漫画
|
购物车
0
我的订单
商品分类
首页
幼儿
文学
社科
教辅
生活
销量榜
通信电子电路(英文版)(Communication Electronic Circuits)
字数: 330000
装帧: 简装
出版社: 科学出版社
作者: 程知群,刘国华
出版日期: 2020-08-01
商品条码: 9787030658142
版次: 1
开本: 其他
页数: 260
出版年份: 2020
定价:
¥98
销售价:
登录后查看价格
¥{{selectedSku?.salePrice}}
库存:
{{selectedSku?.stock}}
库存充足
{{item.title}}:
{{its.name}}
加入购物车
立即购买
加入书单
收藏
精选
¥5.83
世界图书名著昆虫记绿野仙踪木偶奇遇记儿童书籍彩图注音版
¥5.39
正版世界名著文学小说名家名译中学生课外阅读书籍图书批发 70册
¥8.58
简笔画10000例加厚版2-6岁幼儿童涂色本涂鸦本绘画本填色书正版
¥5.83
世界文学名著全49册中小学生青少年课外书籍文学小说批发正版
¥4.95
全优冲刺100分测试卷一二三四五六年级上下册语文数学英语模拟卷
¥8.69
父与子彩图注音完整版小学生图书批发儿童课外阅读书籍正版1册
¥24.2
好玩的洞洞拉拉书0-3岁宝宝早教益智游戏书机关立体翻翻书4册
¥7.15
幼儿认字识字大王3000字幼儿园中班大班学前班宝宝早教启蒙书
¥11.55
用思维导图读懂儿童心理学培养情绪管理与性格培养故事指导书
¥19.8
少年读漫画鬼谷子全6册在漫画中学国学小学生课外阅读书籍正版
¥64
科学真好玩
¥12.7
一年级下4册·读读童谣和儿歌
¥38.4
原生态新生代(传统木版年画的当代传承国际研讨会论文集)
¥11.14
法国经典中篇小说
¥11.32
上海的狐步舞--穆时英(中国现代文学馆馆藏初版本经典)
¥21.56
猫的摇篮(精)
¥30.72
幼儿园特色课程实施方案/幼儿园生命成长启蒙教育课程丛书
¥24.94
旧时风物(精)
¥12.04
三希堂三帖/墨林珍赏
¥6.88
寒山子庞居士诗帖/墨林珍赏
¥6.88
苕溪帖/墨林珍赏
¥6.88
楷书王维诗卷/墨林珍赏
¥9.46
兰亭序/墨林珍赏
¥7.74
祭侄文稿/墨林珍赏
¥7.74
蜀素帖/墨林珍赏
¥12.04
真草千字文/墨林珍赏
¥114.4
进宴仪轨(精)/中国古代舞乐域外图书
¥24.94
舞蹈音乐的基础理论与应用
内容简介
本书阐述了通信电子系统的基本电路组成、工作原理、分析方法、设计要点、技术发展前沿和常用的EDA设计软件。全书共分10章内容,包括通信系统简介、选频和阻抗变换电路、高频单调谐小信号放大器、高频谐振功率放大器、振荡器、振幅调制与解调电路、角度调制与解调电路、数字调制与解调、反馈控制电路、通信电路新技术等内容。本书既重视通信电路系统的概念,又加强单元电路原理和分析方法的介绍,同时对通信新技术、新电路、新趋势也做了简要概括。本教材可作为高等院校电子信息工程、电子科学与技术、通信与信息工程、无线电、信息处理等专业本科生教材,也可供从事电子技术、通信和自动化等领域的工程技术人员参考使用。
目录
Contents
Chapter l
Introduction to basic knowledge of communication electronic circuits 1
1.1 Introduction to communication system 1
1.1.1 Composition ofcommunication system 1
1.1.1.1 Signal source 1
1.1.1.2 Transmitting equipment 2
1.1.1.3 Channel 2
1.1.1.4 Noise 2
1.1.1.5 Receiving equipment 2
1.1.1.6 Destination 2
1.1.2 Classification ofcommunication systems 3
1.2 Basic components of communication system 4
1.2.1 Transmitting unit 4
1.2.2 Channel 6
1.2.2.1 Ground wave 6
1.2.2.2 Sky wave 7
1.2.2.3 Space wave 7
1.2.3 Receiving equipment 8
1.3 Division of wireless communication frequency bands 10
1.4 Frequency-selective circuits 13
1.5 LC resonant circuits 13
1.5.1 Equivalent conversion of series parallel circuit 14
1.5.2 Basic characteristics of LC parallel resonant circuit 15
1.5.2.1 LC parallel resonant circuit without load 15
1.5.2.1.1 Resonance condition of the parallel resonant circuit 15
1.5.2.1.2 Resonant characteristics 16
1.5.2.1.3 Impedance characteristic curves 17
1.5.2.1.4 Frequency-selective characteristics of LC parallel resonant circuit 18
1.5.2.1.5 Bandwidth 19
1.5.2.1.6 Rectangular coefficient 21
1.5.2.2 LC parallel resonant circuit with load 22
1.5.3 Basic characteristics of LC series resonant circuit 23
1.5.3.1 LC series resonant circuit without load 23
1.5.3.1.1 Resonance condition of series resonant circuit 23
1.5.3.1.2 Resonant characteristics 23
1.5.3.1.3 Energy relationships 24
1.5.3.1.4 Impedance characteristic curves 25
1.5.3.1.5 Frequency-selective characteristics of LC series resonant circuit 26
1.5.3.2 LC series resonant circuit with load 26
1.6 Solid filters 27
1.6.1 Quartz crystal filters 27
1.6.2 Ceramic filters 28
1.6.3 Surface acoustic wave filters 29
1.7 Impedance conversion networks 31
1.7.1 Autotransformer circuit 31
1.7.2 Mutual transformer circuit 33
1.7.3 Capacitor divider circuit 34
1.7.4 Partial access of the signal source 35
1.8 LC frequency matching networks 35
1.8.1 L-type matching network 35
1.8.2 T-type matching network 38
1.8.3 π-Type matching network 40
1.9 Basic characteristics of nonlinear devices 42
1.9.1 Introduction 42
1.9.2 Characteristics of nonlinear devices 43
1.9.3 Frequency conversion by nonlinear devices 45
1.9.3.1 Power series analysis 46
1.9.3.2 Linear time-varying analysis 47
1.9.3.3 Exponential function analysis method 49
1.9.3.4 Switching function analysis method 49
1.9.3.5 Hyperbolic function analysis 52
1.10 Summary 54
Problems 55
Chapter 2
Radio frequency amplifiers 57
2.1 Introduction to radio frequency amplifiers 57
2.2 Small signal tuned amplifier 57
2.2.1 High-frequency model of transistor 58
2.2.1.1 Y-parameter BJT equivalent circuit 58
2.2.1.2 Hybrid n equivalent circuit of BJT 59
2.2.1.3 High-frequency parameters of the transistor 60
2.2.2 Performance of small signal amplifier 63
2.2.2.1 Gain 63
2.2.2.2 Bandwidth 63
2.2.2.3 Rectangle coefficient 64
2.2.3 Small signal tuned amplifier circuits 64
2.2.3.1 Equivalent circuit ofthe amplifier and simplified circuit 65
2.2.3.2 Amplifier technical specifications calculation 67
2.2.3.3 Multistage single resonant circuit amplifiers 69
2.2.4 Stability of small signal amplifiers 70
2.2.5 Low noise variable gain broadband amplifiers 71
2.2.5.1 Features of AD603 71
2.2.5.2 Theory of operation 71
2.2.5.3 Gain control introduction 72
2.3 Analysis of radio frequency power amplifier 73
2.3.1 Performance of radio power amplifier 74
2.3.2 Classification of power amplifier 77
2.3.3 Analysis of periodic cosine pulses 78
2.4 Radio frequency tuned Class C power amplifier 81
2.4.1 Piecewise-linear approximation technique 82
2.4.2 Operating principle of Class C power amplifier 84
2.4.2.1 Amplifier characteristic 86
2.4.2.2 Load characteristic 86
2.4.2.3 Collector modulation characteristic 87
2.4.2.4 Base modulation characteristic of Class C power amplifier 88
2.4.3 Bias circuits 90
2.4.3.1 Collector bias circuit 90
2.4.3.2 Base bias circuit 90
2.5 Class E power amplifier 91
2.6 Class F power amplifier 94
2.7 Summary 97
Problems 97
Chapter 3
Sinusoidal oscillators 99
3.1 Introduction 99
3.2 Operational principle of feedback oscillators 100
3.2.1 Basic principle and analysis ofoscillation 100
3.2.2 Oscillation conditions of feedback oscillators - 101
3.2.2.1 Startup condition ofoscillation 101
3.2.2.2 Balance condition ofoscillation 102
3.2.2.3 Stability condition ofoscillation 102
3.2.2.4 Discussion on oscillation conditions 104
3.3 Feedback-type LC oscillators 105
3.3.1 Principle of feedback-type LC oscillators composition 105
3.3.2 Colpitts circuit 107
3.3.3 Hartley circuit 109
3.4 Improved capacitance feedback LC oscillators 111
3.4.1 Clapp circuit 112
3.4.2 Seilercircuit 114
3.5 Frequency stability of oscillators 116
3.5.1 Qualitative analysis of frequency stability 116
3.5.1.1 Absolute frequency stability 116
3.5.1.2 Relative frequency stability 116
3.5.2 Factors causing frequency instability 117
3.5.2.1 Unstable parameters of LC circuit 117
3.5.2.2 Unstable parameters oftransistor 117
3.5.3 Measures for stabilizing frequency 117
3.5.3.1 Reducing the impact from external factors 118
3.5.3.2 Improving standardization of resonant circuit 118
3.6 Quartz crystal oscillators 119
3.6.1 Equivalent circuit and electrical properties of quartz crystal 119
3.6.1.1 Piezoelectricity and the equivalent circuit of quartz crystal 119
3.6.1.2 Impedance characteristic of quartz crystal 121
3.6.1.3 Reasons of high-frequency stability ofquartz crystal 122
3.6.2 Quartz crystal oscillator circuits 123
3.6.2.1 Crystal oscillators in parallel mode 124
3.6.2.1.1 Pierce oscillator 124
3.6.2.1.2 Miller oscillator 126
3.6.2.1.3 Overtone crystal oscillator 126
3.6.2.2 Crystal oscillators in series mode 128
3.7 Negative resistance oscillators 129
3.7.1 Basic characteristics of negative resistance device 130
3.7.2 Negative resistance oscillator circuits 132
3.8 Voltage-controlled oscillators 134
3.8.1 Varactor diode 134
3.8.2 Varactor diode voltage-controlled oscillators 136
3.8.3 RF CMOS voltage-controlled oscillators 137
3.9 Summary 139
Problems 139
Chapter 4
Amplitude modulation, demodulation and frequency mixing 145
4.1 Introduction 145
4.2 Analysis of amplitude-modulated signal 146
4.2.1 Standard AM wave 146
4.2.1.1 Mathematical expressions of standard AM wave 147
4.2.1.2 Waveform of standard AM wave 147
4.2.1.3 Frequency spectrum ofstandard AM wave 149
4.2.1.4 Average power of standard AM wave 150
4.2.2 Double-sideband AM wave 151
4.2.3 Single-sideband AM wave 153
4.3 Amplitude-modulated circuits 154
4.3.1 High-level amplitude-modulated circuits 155
4.3.1.1 Base amplitude-modulated circuit 155
4.3.1.2 Collector amplitude-modulated circuit 157
4.3.2 Low-level amplitude-modulated circuits 157
4.3.2.1 Integrated analog multiplier amplitude-modulated circuit 158
4.3.1.2 Diode ring amplitude-modulated circuit 159
4.4 Amplitude demodulation circuits 161
4.4.1 Large signal peak envelope detection circuits 162
4.4.1.1 Working principle 162
4.4.1.2 Performance index 164
4.4.1.2.1 Detection efficiency 164
4.4.1.2.2 Input resistance 166
4.4.1.3 Detection distortion 167
4.4.1.3.1 Diagonal distortion 167
4.4.1.3.2 Negative peak clipping distortion 168
4.4.2 Synchronous detection circuits 170
4.5 Mixers 173
4.5.1 The basic principle of mixer 174
4.5.2 The key technical indexes of mixer 176
4.5.2.1 Mixing gain 177
4.5.2.2 Selectivity 177
4.5.2.3 Working stability 177
4.5.2.4 Nonlinear distortion 177
4.5.2.5 Noise figure 177
4.5.2.6 Isolation 178
4.5.3 The mixer circuits 178
4.5.3.1 Transistor mixer circuits 178
4.5.3.2 Diode ring mixer circuit 180
4.5.3.3 Integrated analog multiplier mixer circuit 182
4.5.4 Mixing interference and suppression methods 182
4.5.4.1 Combined frequency interference (interference whistle) 183
4.5.4.2 Side-channel interference 184
4.5.4.3 Cross-modulation interference 186
4.5.4.4 Intermodulation interference 186Problems 187
Chapter 5
Angle modulation and demodulation 191
5.1 Introduction 191
5.2 Properties of angle modulation wave 192
5.2.1 Instantaneous frequency and instantaneous phase 192
5.2.2 Mathematical expression of FM and PM 193
5.2.2.1 FM193
5.2.2.2 PM 194
5.2.2.3 Comparison between FM and PM 194
5.2.3 Frequency spectrum and bandwidth of FM and PM 195
5.2.4 Power distribution of the angle modulation wave 198
5.3 Realization of FM 198
5.3.1 Method of the frequency modulation 198
5.3.2 Performance specifications of the FM circuit 198
5.4 FM circuit 199
5.4.1 FM based on varactors 199
5.4.1.1 Varactors 199
5.4.1.2 Principle ofvaractor-based FM circuit 200
5.4.1.3 Practical circuit ofvaractor-based FM 202
5.4.2 FM circuit based on VCO 202
5.4.3 FM circuit based on quartz crystal resonator 203
5.4.3.1 Basic principle 203
5.4.3.2 Practical circuit of quartz crystal FM 203
5.4.4 Indirect FM circuit 204
5.4.4.1 Principle of indirect FM 204
5.4.4.2 PM circuit 205
5.5 Demodulation of FM 208
5.5.1 Methods of frequency discrimination and the circuit model 208
5.5.1.1 Methods of frequency discrimination 208
5.5.2 Performance indices of frequency discriminators 209
5.5.3 Slope of frequency discrimination 210
5.5.4 Phase discriminator 211
5.5.4.1 Phase detector 212
5.5.4.1.1 Multiplier phase detector 212
5.5.4.1.2 Adder phase detector 213
5.5.5 Ratio discriminator 219
5.5.6 Pulse-counting discriminator 220
5.6 Limiter 222
5.6.1 Introduction 222
5.6.2 Diode limiter 223
5.6.3 Transistor limiter 223
5.7 Comparison of different modulation methods 224
5.7.1 Antiinterference ability 224
5.7.2 Bandwidth occupation 225
5.7.3 Transmitter power requirement 225
5.7.4 Strong signal blockage 225
5.8 Low-power FM receiver system based on digital IC 226
Problems 227
Chapter 6
Phase lock loop 231
6.1 PLL introduction 231
6.2 Basic components and principle 231
6.3 Linear model 232
6.3.1 Phase detector model 232
6.3.2 Loop filter model 234
6.3.3 VCO 236
6.3.4 PLLmodel 237
6.4 Application ofthe PLL 237
6.4.1 Frequency synthesizers 238
6.4.2 Local oscillator 238
6.4.3 Clock generation 239
6.5 Summary 239
Problems 239
References 241
×
Close
添加到书单
加载中...
点此新建书单
×
Close
新建书单
标题:
简介:
蜀ICP备2024047804号
Copyright 版权所有 © jvwen.com 聚文网