您好,欢迎来到聚文网。
登录
免费注册
网站首页
|
搜索
热搜:
磁力片
|
漫画
|
购物车
0
我的订单
商品分类
首页
幼儿
文学
社科
教辅
生活
销量榜
凸优化算法
字数: 623千字
装帧: 平装
出版社: 清华大学出版社
作者: (美)博塞卡斯(Dimitri P.Bertsekas) 著
出版日期: 2016-05-01
商品条码: 9787302430704
版次: 1
开本: 大32开
页数: 564
出版年份: 2016
定价:
¥89
销售价:
登录后查看价格
¥{{selectedSku?.salePrice}}
库存:
{{selectedSku?.stock}}
库存充足
{{item.title}}:
{{its.name}}
加入购物车
立即购买
加入书单
收藏
精选
¥5.83
世界图书名著昆虫记绿野仙踪木偶奇遇记儿童书籍彩图注音版
¥5.39
正版世界名著文学小说名家名译中学生课外阅读书籍图书批发 70册
¥8.58
简笔画10000例加厚版2-6岁幼儿童涂色本涂鸦本绘画本填色书正版
¥5.83
世界文学名著全49册中小学生青少年课外书籍文学小说批发正版
¥4.95
全优冲刺100分测试卷一二三四五六年级上下册语文数学英语模拟卷
¥8.69
父与子彩图注音完整版小学生图书批发儿童课外阅读书籍正版1册
¥24.2
好玩的洞洞拉拉书0-3岁宝宝早教益智游戏书机关立体翻翻书4册
¥7.15
幼儿认字识字大王3000字幼儿园中班大班学前班宝宝早教启蒙书
¥11.55
用思维导图读懂儿童心理学培养情绪管理与性格培养故事指导书
¥19.8
少年读漫画鬼谷子全6册在漫画中学国学小学生课外阅读书籍正版
¥64
科学真好玩
¥12.7
一年级下4册·读读童谣和儿歌
¥38.4
原生态新生代(传统木版年画的当代传承国际研讨会论文集)
¥11.14
法国经典中篇小说
¥11.32
上海的狐步舞--穆时英(中国现代文学馆馆藏初版本经典)
¥21.56
猫的摇篮(精)
¥30.72
幼儿园特色课程实施方案/幼儿园生命成长启蒙教育课程丛书
¥24.94
旧时风物(精)
¥12.04
三希堂三帖/墨林珍赏
¥6.88
寒山子庞居士诗帖/墨林珍赏
¥6.88
苕溪帖/墨林珍赏
¥6.88
楷书王维诗卷/墨林珍赏
¥9.46
兰亭序/墨林珍赏
¥7.74
祭侄文稿/墨林珍赏
¥7.74
蜀素帖/墨林珍赏
¥12.04
真草千字文/墨林珍赏
¥114.4
进宴仪轨(精)/中国古代舞乐域外图书
¥24.94
舞蹈音乐的基础理论与应用
编辑推荐
随着大规模资源分配、信号处理、机器学习等应用领域的快速发展,凸优化近来正引起人们日益浓厚的兴趣。本书力图给大家较为全面通俗地介绍求解大规模凸优化问题的近期新算法。本书几乎囊括了所有主流的凸优化算法。包括梯度法,次梯度法,多面体逼近法,邻近法和内点法等。这些方法通常依赖于代价函数和约束条件的凸性(而不一定依赖于其可微性),并与对偶性有着直接或间接的联系。作者针对具体问题的特定结构,给出了大量的例题,来充分展示算法的应用。
内容简介
本书几乎囊括了所有主流的凸优化算法。包括梯度法、次梯度法、多面体逼近法、邻近法和内点法等。这些方法通常依赖于代价函数和约束条件的凸性(而不一定依赖于其可微性),并与对偶性有着直接或间接的联系。作者针对具体问题的特定结构,给出了大量的例题,来充分展示算法的应用。各章的内容如下: 靠前章,凸优化模型概述; 第2章,优化算法概述; 第3章,次梯度算法; 第4章,多面体逼近算法; 第5章,邻近算法; 第6章,其他算法问题。本书的一个特色是在强调问题之间的对偶性的同时,也十分重视建立在共轭概念上的算法之间的对偶性,这常常能为选择合适的算法实现方式提供新的灵感和计算上的便利。
作者简介
博塞斯(Dimitri P.Bertsekas)教授是优化理论的靠前有名学者、美国国家工程院院士,现任美国麻省理工学院电气工程与计算机科学系教授,曾在斯坦福大学工程经济系和伊利诺伊大学电气工程系任教,在优化理论、控制工程、通信工程、计算机科学等领域有丰富的科研教学经验,成果丰硕。博塞斯教授是一位多产作者,著有14本专著和教科书。
目录
Contents
1. Convex Optimization Models: An Overview . . . . . . p. 1
1.1. LagrangeDuality .......... .......... p.2
1.1.1. Separable Problems – Decomposition . . . . . . . . . p. 7
1.1.2. Partitioning .................... p.9
1.2. Fenchel Duality and Conic Programming . . . . . . . . . . p. 10
1.2.1. LinearConicProblems . . . . . . . . . . . . . . . p.15
1.2.2. Second Order Cone Programming . . . . . . . . . . . p. 17
1.2.3. Semide.nite Programming . . . . . . . . . . . . . . p. 22
1.3. AdditiveCostProblems . . . . . . . . . . . . . . . . . p.25
1.4. LargeNumberofConstraints . . . . . . . . . . . . . . . p.34
1.5. ExactPenalty Functions . . . . . . . . . . . . . . . . p.39
1.6. Notes,Sources,andExercises . . . . . . . . . . . . . . p.47
2. Optimization Algorithms: An Overview . . . . . . . . p. 53
2.1. IterativeDescentAlgorithms . . . . . . . . . . . . . . . p.55
2.1.1. Di.erentiable Cost Function Descent – Unconstrained . . . . Problems ..................... p.58
2.1.2. Constrained Problems – Feasible Direction Methods . . . p. 71
2.1.3. Nondi.erentiable Problems – Subgradient Methods . . . p. 78
2.1.4. Alternative Descent Methods . . . . . . . . . . . . . p. 80
2.1.5. IncrementalAlgorithms . . . . . . . . . . . . . . . p.83
2.1.6. Distributed Asynchronous Iterative Algorithms . . . . p. 104
2.2. ApproximationMethods . . . . . . . . . . . . . . . p.106
2.2.1. Polyhedral Approximation . . . . . . . . . . . . . p. 107
2.2.2. Penalty, Augmented Lagrangian, and Interior . . . . . . . PointMethods .................. p.108
2.2.3. Proximal Algorithm, Bundle Methods, and . . . . . . . . . TikhonovRegularization . . . . . . . . . . . . . . p.110
2.2.4. Alternating Direction Method of Multipliers . . . . . p. 111
2.2.5. Smoothing of Nondi.erentiable Problems . . . . . . p. 113
2.3. Notes,Sources,andExercises . . . . . . . . . . . . . p.119
3. SubgradientMethods . . . . . . . . . . . . . . . p.135
3.1. Subgradients of Convex Real-Valued Functions . . . . . . p. 136
iv
Contents
3.1.1. Characterization of the Subdi.erential . . . . . . . . p. 146
3.2. Convergence Analysis of Subgradient Methods . . . . . . p. 148
3.3. .-SubgradientMethods ................ p.162
3.3.1. Connection with Incremental Subgradient Methods . . p. 166
3.4. Notes,Sources,andExercises . . . . . . . . . . . . . . p.167
4. Polyhedral Approximation Methods . . . . . . . . . p. 181
4.1. Outer Linearization – Cutting Plane Methods . . . . . . p. 182
4.2. Inner Linearization – Simplicial Decomposition . . . . . . p. 188
4.3. Duality of Outer and Inner Linearization . . . . . . . . . p. 194
4.4. Generalized Polyhedral Approximation . . . . . . . . . p. 196
4.5. Generalized Simplicial Decomposition . . . . . . . . . . p. 209
4.5.1. Di.erentiableCostCase . . . . . . . . . . . . . . p.213
4.5.2. Nondi.erentiable Cost and Side Constraints . . . . . p. 213
4.6. Polyhedral Approximation for Conic Programming . . . . p. 217
4.7. Notes,Sources,andExercises . . . . . . . . . . . . . . p.228
5. ProximalAlgorithms . . . . . . . . . . . . . . . p.233
5.1. Basic Theory of Proximal Algorithms . . . . . . . . . . p. 234
5.1.1. Convergence ................... p.235
5.1.2. RateofConvergence. . . . . . . . . . . . . . . . p.239
5.1.3. Gradient Interpretation . . . . . . . . . . . . . . p. 246
5.1.4. Fixed Point Interpretation, Overrelaxation, . . . . . . . . . andGeneralization ................ p.248
5.2. DualProximalAlgorithms . . . . . . . . . . . . . . . p.256
5.2.1. Augmented Lagrangian Methods . . . . . . . . . . p. 259
5.3. Proximal Algorithms with Linearization . . . . . . . . . p. 268
5.3.1. Proximal Cutting Plane Methods . . . . . . . . . . p. 270
5.3.2. BundleMethods ................. p.272
5.3.3. Proximal Inner Linearization Methods . . . . . . . . p. 276
5.4. Alternating Direction Methods of Multipliers . . . . . . . p. 280
5.4.1. Applications in Machine Learning . . . . . . . . . . p. 286
5.4.2. ADMM Applied to Separable Problems . . . . . . . p. 289
5.5. Notes,Sources,andExercises . . . . . . . . . . . . . . p.293
6. Additional Algorithmic Topics . . . . . . . . . . . p. 301
6.1. GradientProjectionMethods . . . . . . . . . . . . . . p.302
6.2. Gradient Projection with Extrapolation . . . . . . . . . p. 322
6.2.1. An Algorithm with Optimal Iteration Complexity . . . p. 323
6.2.2. Nondi.erentiable Cost – Smoothing . . . . . . . . . p. 326
6.3. ProximalGradientMethods . . . . . . . . . . . . . . p.330
6.4. Incremental Subgradient Proximal Methods . . . . . . . p. 340
6.4.1. Convergence for Methods with Cyclic Order . . . . . p. 344
Contents
6.4.2. Convergence for Methods with Randomized Order . . p. 353
6.4.3. Application in Specially Structured Problems . . . . . p. 361
6.4.4. Incremental Constraint Projection Methods . . . . . p. 365
6.5. CoordinateDescentMethods . . . . . . . . . . . . . . p.369
6.5.1. Variants of Coordinate Descent . . . . . . . . . . . p. 373
6.5.2. Distributed Asynchronous Coordinate Descent . . . . p. 376
6.6. Generalized Proximal Methods . . . . . . . . . . . . . p. 382
6.7. .-Descent and Extended Monotropic Programming . . . . p. 396
6.7.1. .-Subgradients .................. p.397
6.7.2. .-DescentMethod........ ......... p.400
6.7.3. Extended Monotropic Programming Duality . . . . . p. 406
6.7.4. Special Cases of Strong Duality . . . . . . . . . . . p. 408
6.8. InteriorPointMethods . . . . . . . . . . . . . . . . p.412
6.8.1. Primal-Dual Methods for Linear Programming . . . . p. 416
6.8.2. Interior Point Methods for Conic Programming . . . . p. 423
6.8.3. Central Cutting Plane Methods . . . . . . . . . . . p. 425
6.9. Notes,Sources,andExercises . . . . . . . . . . . . . . p.426
Appendix A: Mathematical Background . . . . . . . . p. 443
A.1. LinearAlgebra ........... ......... p.445
A.2. TopologicalProperties . . . . . . . . . . . . . . . . p.450
A.3. Derivatives ..................... p.456
A.4. ConvergenceTheorems . . . . . . . . . . . . . . . . p.458
Appendix B: Convex Optimization Theory: A Summary . p. 467
B.1. Basic Concepts of Convex Analysis . . . . . . . . . . . p. 467
B.2. Basic Concepts of Polyhedral Convexity . . . . . . . . . p. 489
B.3. Basic Concepts of Convex Optimization . . . . . . . . . p. 494
B.4. Geometric Duality Framework . . . . . . . . . . . . . p. 498
B.5. Duality andOptimization . . . . . . . . . . . . . . . p.505
References .............. ......... p.519
Index ................. ......... p.557
×
Close
添加到书单
加载中...
点此新建书单
×
Close
新建书单
标题:
简介:
蜀ICP备2024047804号
Copyright 版权所有 © jvwen.com 聚文网