摘要
1.学习数学史对于了解数学与文化的作用数学史研究数学概念、数学方法和数学思想的起源与发展及数学与社会、经济和一般文化的联系。无论对于深刻认识作为科学的数学本身,还是全面了解整个人类文明的发展都具有重要意义[1]。庞加莱(法,1854~1912年):“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。”萨顿(比利时-美,1884~1956年):“学习数学史倒不一定产生更出色的数学家,但它产生更温雅的数学家,学习数学史能丰富他们的思想,抚慰他们的心灵,并且培养他们的高雅品质。”萨顿,1911年在比利时根特大学获得数学博士学位,号称“科学史之父”是当之无愧的,因为科学史在他手中终于成为一门独立的学科。现今国际上最权威的科学史学术刊物《爱雪斯》(Isis)杂志是萨顿于1913年创办的,科学史学会很大程度上是因萨顿而成立的(1924)。通过在哈佛大学数十年的辛勤工作,萨顿终于完成了(至少是象征性地完成了)科学史学科在现代大学的建制过程。例如,设立科学史的博士学位(1936)、任命科学史的教授职位(1940)等。1955年,美国科学史学会以萨顿的名字设立了科学史优选奖(图片1),并把第一枚奖章授予他本人,说明国际科学史界对他的承认与崇敬。
数学史的分期方法很多[1~5],我们采用下述分法:
(1)数学的起源与早期发展(公元前6世纪前)。
(2)初等数学时期(公元前6世纪~公元17世纪中叶)。1图片指所附的光盘中有相应的图片,下同。
(3)近代数学时期(17世纪中叶~19世纪末)。
(4)现代数学时期(19世纪末至今)。
本演讲涉及处于数学中心区发展的主要成就,介绍100多位有名数学家的工作及其重要著作,各个历史时期中国数学的状况,在传统的几何、代数、三角基础上发展起来的近代数学的主要成就:解析几何与微积分学及近现代数学分支,如射影几何、非欧几何、微分几何、复变函数论、微分方程、动力系统、变分法、实变函数论、数论、布尔代数、逻辑代数、数理逻辑、抽象代数、集合论、图论、拓扑学、概率论等。同时,涉及促进数学发展的相关学科,如力学、物理学、天文学的近代发展。
数学是一种文化。我们简要论及文明背景(古代埃及、古代巴比伦、古代印度、古代中国、古代希腊简史)、帝国兴衰(马其顿帝国、罗马帝国、阿拉伯帝国、拜占庭帝国、神圣罗马帝国、波旁王朝、哈布斯堡王朝、普鲁士王国、奥匈帝国)、宗教特色(婆罗门教、印度教、犹太教、基督教、天主教、伊斯兰教、佛教)、社会变革(百年翻译运动、十字军东征、欧洲翻译运动、文艺复兴运动、宗教改革运动、哥白尼革命、英国资产阶级革命、法国启蒙运动、法国大革命、欧洲1848年革命、日本明治维新)等。数学史家汉克尔(德,1839~1873年)形象地指出过数学和其他自然科学的显著差异:“在大多数的学科里,一代人的建筑为下一代人所摧毁,一个人的创造被另一个人所破坏。唯独数学,每一代人都在古老的大厦上添砖加瓦。”[1]
2.演讲工作安排哈尔莫斯(匈-美,1916~2006年):“一个公开的演讲就应该简单而且初等,它应该不是复杂的和技术性的。”2本演讲按数学史的分期及学科的发展,分13讲,每讲约90分钟。为有助于思考题或论述题的完成,安排数学论文写作初步供选讲(第14讲)。
第1讲:数学的起源与早期发展。
第2讲:古代希腊数学。
第3讲:中世纪的东西方数学I。
第4讲:中世纪的东西方数学II。
第5讲:文艺复兴时期的数学。
第6讲:牛顿时代:解析几何与微积分的创立。
第7讲:18世纪的数学:分析时代。
第8讲:19世纪的代数。
第9讲:19世纪的几何。
第10讲:19世纪的分析。2J.Ewing.PaulHalmos:他的原话。数学译林,2009,28(2):150。
第11讲:20世纪数学:纯粹数学大发展。
第12讲:20世纪数学:数学研究新成就。
第13讲:20世纪数学:数学中心的迁移。
第14讲:数学论文写作初步。
下面开始:
第1讲:数学的起源与早期发展,主要内容:数与形概念的产生、河谷文明与早期数学,包括西汉以前的中国数学。
1.1数与形概念的产生数学思想萌芽于漫长的历史进程中。从原始的“数”(shˇu)到抽象的“数”(sh`u)的概念的形成,是一个缓慢、渐进的过程。人类从生产活动中认识到了具体的数,导致了计数法。“屈指可数”表明人类计数最原始、最方便的工具是手指。例如,“手指计数”(邮票:伊朗,1966)。
……