您好,欢迎来到聚文网。 登录 免费注册
守恒定律用的数值法

守恒定律用的数值法

  • 装帧: 平装
  • 出版社: 世界图书出版公司
  • 作者: 勒维克(Randall?J.LeVeque)
  • 出版日期: 2010-12-01
  • 商品条码: 9787510027406
  • 版次: 1
  • 开本: 其他
  • 页数: 0
  • 出版年份: 2010
定价:¥45 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
编辑推荐
《守恒定律用的数值法》是由世界图书出版公司出版的。
内容简介
《守恒定律用的数值法》内容简介:These notes developed from a course on the numerical solution of conservation lawsfirst taught at the University of Washington in the fall of 1988 and then at ETH duringthe following spring.
The overall emphasis is on studying the mathematical tools that are essential in de-veloping, analyzing, and successfully using numerical methods for nonlinear systems ofconservation laws, particularly for problems involving shock waves. A reasonable un-derstanding of the mathematical structure of these equations and their solutions is firstrequired, and Part I of these notes deals with this theory. Part II deals more directly withnumerical methods, again with the emphasis on general tools that are of broad use. Ihave stressed the underlying ideas used in various classes of methods rather than present-ing the most sophisticated methods in great detail. My aim was to provide a sufficientbackground that students could then approach the current research literature with thenecessary tools and understanding.
作者简介
作者:(美国)勒维(Randall J.LeVeque)
目录
Mathematical Theory
1 Introduction
1.1 Conservation laws
1.2 Applications
1.3 Mathematical difficulties
1.4 Numerical difficulties
1.5 Some references
2 The Derivation of Conservation Laws
2.1 Integral and differential forms
2.2 Scalar equations
2.3 Diffusion
3 Scalar Conservation Laws
3.1 The linear advection equation
3.1.1 Domain of dependence
3.1.2 Nonsmooth data
3.2 Burgers' equation
3.3 Shock formation
3.4 Weak solutions
3.5 The Riemann Problem
3.6 Shock speed
3.7 Manipulating conservation laws
3.8 Entropy conditions
3.8.1 Entropy functions
4 Some Scalar Examples
4.1 Traffic flow
4.1.1 Characteristics and sound speed
4.2 Two phase flow
5 Some Nonlinear Systems
5.1 The Euler equations
5.1.1 Ideal gas
5.1.2 Entropy
5.2 Isentropic flow
5.3 Isothermal flow
5.4 The shallow water equations
Linear Hyperbolic Systems
6.1 Chaxacteristic variables
6.2 Simple waves
6.3 The wave equation
6.4 Linearization of nonlinear systems
6.4.1 Sound waves
6.5 The Riemann Problem
6.5.1 The phase plane
7 Shocks and the Hugoniot Locus
7.1 The Hvgoniot locus
7.2 Solution of the Riemann problem
7.2.1 Riemann problems with no solution
7.3 Genuine nonlinearity
7.4 The Lax entropy condition
7.5 Linear degeneracy
7.6 The Riemavn problem
Rarefaction Waves and Integral Curves
8.1 Integral curves
8.2 Rarefaction waves
8.3 General solution of the Riemann problem
8.4 Shock collisions
9 The Riemann problem for the Euler equations
9.1 Contact discontinuities
9.2 Solution to the Riemann problem

II Numerical Methods
10 Numerical Methods for Linear Equations
10.1 The global error and convergence
10.2 Norms
10.3 Local truncation error
10.4 Stability
10.5 The Lax Equivalence Theorem
10.6 The CFL condition
10.7 Upwind methods
11 Computing Discontinuous Solutions
11.1 Modified equations
11.1.1 First order methods and diffusion
11.1.2 Second order methods and dispersion
11.2 Accuracy
12 Conservative Methods for Nonlinear Problems
12.1 Conservative methods
12.2 Consistency
12.3 Discrete conservation
12.4 The Lax-Wendroff Theorem
12.5 The entropy condition
13 Godunov's Method
13.1 The Courat-Isaacson-Pees method
13.2 Godunov's method
13.3 Linear systems
13.4 The entropy condition
13.5 Scalar conservation laws
14 Approximate Piemann Solvers
14.1 General theory
14.1.1 The entropy condition
14.1.2 Modified conservation laws
14.2 Roe's approximate Riemann solver
14.2.1 The numerical flux function for Roe's solver
14.2.2 A sonic entropy fix
14.2.3 The scalar case
14.2.4 A Roe matrix for isothermal flow
15 Nonlinear Stability
15.1 Convergence notions
15.2 Compactness
15.3 Total variation stability
15.4 Total variation diminishing methods
15.5 Monotonicity preserving methods
15.6 L1-contracting numerical methods
15.7 Monotone methods
16 High Resolution Methods
16.1 Artificial Viscosity
16.2 Flux-limiter methods
16.2.1 Linear systems
16.3 Slope-limiter methods
16.3.1 Linear Systems
16.3.2 Nonlinear scalar equations
16.3.3 Nonlinear Systems
17 Semi-discrete Methods
17.1 Evolution equations for the cell averages
17.2 Spatial accuracy
17.3 Reconstruction by primitive functions
17.4 ENO schemes
18 Multidimensional Problems
18.1 Semi-discrete methods
18.2 Splitting methods
18.3 TVD Methods
18.4 Multidimensional approaches
Bibliography
摘要
iscontinuous solutions of the type shown above clearly do not satisfy the PDE in theclassical sense at all points, since the derivatives are not defined at discontinuities. Weneed to define what we mean by a solution to the conservation law in this case. To findthe correct approach we must first understand the derivation of conservation laws fromphysical principles. We wilI see in Chapter 2 that this leads first to an integral form of theconservation law, and that the differential equation is derived from this only by imposingadditional smoothness assumptions on the solution. The crucial fact is that the integralform continues to be valid even for discontinuous solutions. Unfortunately the integral form is more difficult to work with than the differentialequation, especially when it comes to discretization. Since the PDE continues to holdexcept at discontinuities, another approach is to supplement the differential equations byadditional“jump conditions”that must be satisfied across discontinuities. These can bederived by again appealing to the integral form. To avoid the necessity of explicitly imposing these conditions, we will also introducethe weak form of the differential equations. This again involves integrals and allowsdiscontinuous solutions but is easier to work with than the original integral form of theconservation laws. The weak form will be fundamental in the development and analysisof numerical methods.
Another mathematical difficulty that we must face is the possible nonuniqueness ofsolutions. Often there is more than one weak solution to the conservation law with thesame initial data. If our conservation law is to model the real world then clearly onlyone of these is physically relevant. The fact that the equations have other, spurious,solutions is a result of the fact that our equations are only a model of reality and somephysical effects have been ignored. In particular, hyperbolic conservation laws do notinclude diffusive or viscous effects. Recall, for example, that the Euler equations resultfrom the Navier-Stokes equations by ignoring fluid viscosity. Although viscous effectsmay be negligible throughout most of the flow, near discontinuities the effect is alwaysstrong. In fact, the full Navier-Stokes equations have smooth solutions for the simpleflows we are considering, and the apparent discontinuities are in reality thin regions withvery steep gradients. What we hope to model with the Euler equations is the limit ofthis smooth solution as the viscosity parameter approaches zero, which will in fact be oneweak solution of the Euler equations.

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网