您好,欢迎来到聚文网。 登录 免费注册
数的几何基础

数的几何基础

  • 字数: 381000
  • 装帧: 精装
  • 出版社: 中国科学技术大学出版社
  • 作者: 朱尧辰
  • 出版日期: 2024-01-01
  • 商品条码: 9787312057687
  • 版次: 1
  • 开本: 16开
  • 页数: 284
  • 出版年份: 2024
定价:¥75 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
编辑推荐
数论被高斯誉为“数学中的皇冠”。有名数学家希尔伯特曾精选出23个尚未解决的数学问题,以期引领和指导数学的发展,其中第7个问题“某些数的无理性和超越性”和第10个问题“丢番图方程的可解性”就涉及丢番图逼近与超越数。 丢番图逼近与超越数是数论中两个紧密相关的重要分支,国际学术界有将丢番图逼近与超越数作为同一主题的惯例,因此本项目与之保持一致。它们在数论研究中具有非常悠久的历史,不仅是数论中的基础问题,也具有很重要的应用价值,比如编码与密码。
内容简介
数的几何是数论的一个经典分支,本书给出它的基本结果和一些数论应用。基本结果包括凸体和格的性质、Minkowski第一和第二凸体定理、Minkowski-Hlawka容许格定理、Mahler列紧性定理、二次型的约化理论及堆砌与覆盖等;数论应用有四平方和定理及Hurwitz逼近定理等的证明。
作者简介
朱尧辰,江苏镇江人,1942年生,中国科学院数学与系统科学研究院应用数学研究所研究员。1959年考入中国科学技术大学应用数学系,师从关肇直院士、万哲先院士、王元院士等有名数学家。上世纪80年代参加华罗庚先生推广优选法和统筹法的工作以及国防部门密码课题研究,其后主要研究丢番图逼近、超越数以及数论方法的应用,并在北京大学和中国科学院大学等单位承担基础和专业数学课程教学工作。1983—1993年先后在法国庞加莱研究所和法国高等科学研究所,德国普朗克数学研究所和科隆大学,美国南密西西比大学,以及中国香港浸会学院等科研机构和大学从事合作研究或任教。曾任《数学进展》常务编委(1991—2000),美国和德国《数学评论》(MR 1981—2013和ZBL1991—2016)评论员。发表论文约100篇,出版各类数学论著10余部。获中科院自然科学一等奖(集体),享受国务院特殊津贴。
目录
前言
主要符号说明
第1章n维点集
1.1整点
1.2列紧集
1.3对称凸体
1.4星形体
第2章格
2.1格和基
2.2子格
2.3点组扩充成基
2.4格关于子格的类数
2.5格点分布定理
2.6格在线性变换下的像
2.7格点列的收敛性
2.8对偶格
2.9对偶变换
第3章Minkowski第一凸体定理
……

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网