您好,欢迎来到聚文网。 登录 免费注册
代数群和微分Galois理论(英文版)(精)/美国数学会经典影印系列

代数群和微分Galois理论(英文版)(精)/美国数学会经典影印系列

  • 字数: 360
  • 出版社: 高等教育
  • 作者: (西)克雷斯波//(波)哈杰托
  • 商品条码: 9787040510133
  • 版次: 1
  • 开本: 16开
  • 页数: 225
  • 出版年份: 2019
  • 印次: 1
定价:¥99 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
目录
Preface Introduction Part 1. Algebraic Geometry Chapter 1. Affine and Projective Varieties 1.1. Affine varieties 1.2. Abstract affine varieties 1.3. Projective varieties Exercises Chapter 2. Algebraic Varieties 2.1. Prevarieties 2.2. Varieties Exercises Part 2. Algebraic Groups Chapter 3. Basic Notions 3.1. The notion of Mgebraic group 3.2. Connected algebraic groups 3.3. Subgroups and morphisms 3.4. Linearization of affine algebraic groups 3.5. Homogeneous spaces 3.6. Characters and semi-invariants 3.7. Quotients Exercises Chapter 4. Lie Algebras and Algebraic Groups 4.1. Lie algebras 4.2. The Lie algebra of a linear algebraic group 4.3. Decomposition of algebraic groups 4.4. Solvable algebraic groups 4.5. Correspondence between algebraic groups and Lie algebras 4.6. Subgroups of SL(2, C) Exercises Part 3. Differential Galois Theory Chapter 5. Picard-Vessiot Extensions 5.1. Derivations 5.2. Differential rings 5.3. Differential extensions 5.4. The ring of differential operators 5.5. Homogeneous linear differential equations 5.6. The Picard-Vessiot extension Exercises Chapter 6. The Galois Correspondence 6.1. Differential Galois group 6.2. The differential Galois group as a linear algebraic group 6.3. The fundamental theorem of differential Galois theory 6.4. Liouville extensions 6.5. Generalized Liouville extensions Exercises Chapter 7. Differential Equations over C(z) 7.1. Fuchsian differential equations 7.2. Monodromy group 7.3. Kovacic's algorithm

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网