Preface
Chapter 0.Review of Semisimple Lie Algebras
§0.1.Cartan Decomposition
§0.2.Root Systems
§0.3.Weyl Groups
§0.4.Chevalley-Bruhat Ordering of W
§0.5.Universal Enveloping Algebras
§0.6.Integral Weights
§0.7.Representations
§0.8.Finite Dimensional Modules
§0.9.Simple Modules for s(2,C)
Part I.Highest Weight Modules
Chapter 1.Category O:Basics
§1.1.Axioms and Consequences
§1.2.Highest Weight Modules
§1.3.Verma Modules and Simple Modules
§1.4.Maximal Vectors in Verma Modules
§1.5.Example:s(2,C)
§1.6.Finite Dimensional Modules
§1.7.Action of the Center
§1.8.Central Characters and Linked Weights
§1.9.Harish-Chandra Homomorphism
§1.10.Harish-Chandra's Theorem
§1.11.Category O is Artinian
§1.12.Subcategories OX
§1.13.Blocks
§1.14.Formal Characters of Finite Dimensional Modules
§1.15.Formal Characters of Modules in O
§1.16.Formal Characters of Verma Modules
Notes
Chapter 2. Characters of Finite Dimensional Modules
§2.1.Summary of Prerequisites
§2.2.F0rmal Characters Revisited
§2.3.The Functions P and q
§2.4.Formulas of Weyl and Kostant
§2.5.Dimension Formula
§2.6.Maximal Submodule of M(λ),入∈Λ+
§2.7.Related Topics
Notes
Chapter 3.Category O:Methods
§3.1.Horn and Ext
§3.2.Duality in O
§3.3.Duals of Highest Weight Modules
§3.4.The Reflection Group W[λ]
§3.5.Dominant and Antidominant Weights
§3.6.Tensoring Verma Modules with Finite Dimensional Modules
§3.7.Standard Filtrations
§3.8.Projectives in O
§3.9.Indecomposable Projectives
§3.10.Standard Filtrations of Projectives