您好,欢迎来到聚文网。 登录 免费注册
J-全纯曲线和辛拓扑(第2版)(英文版)(精)/美国数学会经典影印系列

J-全纯曲线和辛拓扑(第2版)(英文版)(精)/美国数学会经典影印系列

  • 字数: 1160
  • 出版社: 高等教育
  • 作者: (英)杜莎·麦克达夫//(德)迪特马尔·萨拉蒙
  • 商品条码: 9787040469936
  • 版次: 1
  • 开本: 16开
  • 页数: 726
  • 出版年份: 2017
  • 印次: 1
定价:¥199 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
J-全纯曲线理论自其由Gromov于P985年引入以来 ,已经变得非常重要。在数学中,它的应用包括许多 辛拓扑中的关键结果。它也是创立Floer同调的主要 灵感之一。在数学物理中,它提供了一个自然的语境 用以在其中定义镜像对称猜想的两个重要成分—— Gromov—Witten不变量和量子上同调。 由杜莎·麦克达夫、迪特马尔·萨拉蒙主编的《 J-全纯曲线和辛拓扑(第2版)(英文版)(精)/美国数学 会经典影印系列》的主要目的是以充分和严格的细节 来建立这个主题的基本定理。特別地,本书包含关于 球面的Gromov紧性定理、球面的黏合定理以及在半正 情形下量子乘法的结合性的完整的证明。本书也可以 作为对辛拓扑当前工作的介绍:有两个关于应用的长 的章节,一章专注于辛拓扑的经典结果,另一章涉及 量子上同调。最后一章概述了Floer.理论的一些最 新进展。本书的五个附录提供了与线性椭圓算子的经 典理论、Fredholm理论和Sobolev空间相关的必需的 背景知识.以及关于零亏格稳定曲线模空间的讨论和 四维流形中J-全纯曲线的交点的正性的证明。第二版 澄清了各种争议,纠正了第一版中的几个错误,并包 含了一些在第10章和附录C与D中的增加的结果,更新 了对于最新进展的参考文献。
目录
Preface to the second edition Preface Chapter 1. Introduction 1.1. Symplectic manifolds 1.2. Moduli spaces: regularity and compactness 1.3. Evaluation maps and pseudocycles 1.4. The Gromov-Witten invariants 1.5. Applications and further developments Chapter 2. J-holomorphic Curves 2.1. Almost complex structures 2.2. The nonlinear CauchyoRiemann equations 2.3. Unique continuation 2.4. Critical points 2.5. Somewhere injective curves 2.6. The adjunction inequality Chapter 3. Moduli Spaces and Transversality 3.1. Moduli spaces of simple curves 3.2. Transversality 3.3. A regularity criterion 3.4. Curves with pointwise constraints 3.5. Implicit function theorem Chapter 4. Compactness 4.1. Energy 4.2. The bubbling phenomenon 4.3. The mean value inequality 4.4. The isoperimetric inequality 4.5. Removal of singularities 4.6. Convergence modulo bubbling 4.7. Bubbles connect Chapter 5. Stable Maps 5.1. Stable maps 5.2. Gromov convergence 5.3. Gromov compactness 5.4. Uniqueness of the limit 5.5. Gromov compactness for stable maps 5.6. The Gromov topology Chapter 6. Moduli Spaces of Stable Maps 6.1. Simple stable maps 6.2. Transversality for simple stable maps 6.3. Transversality for evaluation maps 6.4. Semipositivity 6.5. Pseudocycles 6.6. Gromov-Witten pseudocycles 6.7. The pseudocycle of graphs Chapter 7. Gromov-Witten Invariants 7.1. Counting pseudoholomorphic spheres 7.2. Variations on the definition 7.3. Counting pseudoholomorphic graphs 7.4. Rational curves in projective spaces 7.5. Axioms for Gromov-Witten invariants Chapter 8. Hamiltonian Perturbations 8.1. Trivial bundles 8.2. Locally Hamiltonian fibrations 8.3. Pseudoholomorphic sections 8.4. Pseudoholomorphic spheres in the fiber 8.5. The pseudocycle of sections 8.6. Counting pseudoholomorphic sections Chapter 9. Applications in Symplectic Topology 9.1. Periodic orbits of Hamiltonian systems 9.2. Obstructions to Lagrangian embeddings 9.3. The nonsqueezing theorem 9.4. Symplectic 4-manifolds 9.5. The group of symplectomorphisms 9.6. Hofer geometry 9.7. Distinguishing symplectic structures Chapter 10. Gluing 10.1. The gluing theorem 10.2. Connected sums of J-holomorphic curves 10.3. Weighted norms 10.4. Cutoff functions 10.5. Construction of the gluing map 10.6. The derivative of the gluing map 10.7. Surjectivity of the gluing map 10.8. Proof of the splitting axiom 10.9. The gluing theorem revisited Chapter 11. Quantum Cohomology 11.1. The small quantum cohomology ring 11.2. The Gromov-Witten potential 11.3. Four examples 11.4. The Seidel representation 11.5. Frobenius manifolds Chapter 12. Floer Homology 12.1. Floer's cochain complex 12.2. Ring structure 12.3. Poincare duality 12.4. Spectral invariants 12.5. The Seidel representation 12.6. Donaldson's quantum category 12.7. The symplectic vortex equations Appendix A. Fredholm Theory A.1. Fredholm theory A.2. Determinant line bundles A.3. The implicit function theorem A.4. Finite dimensional reduction A.5. The Sard-Smale theorem Appendix B. Elliptic Regularity B.1. Sobolev spaces B.2. The Calderon-Zygmund inequality B.3. Regularity for the Laplace operator B.4. Elliptic bootstrapping Appendix C. The Riemann-Roch Theorem C.1. Cauchy-Riemann operators C.2. Elliptic estimates C.3. The boundary Maslov index (by Joel Robbin) C.4. Proof of the Riemann-Roch theorem C.5. The Riemann mapping theorem C.6. Nonsmooth bundles C.7. Almost complex structures Appendix D. Stable Curves of Genus Zero D.1. MSbius transformations and cross ratios D.2. Trees, labels, and splittings D.3. Stable curves D.4. The Grothendieck-Knudsen manifold D.5. The Gromov topology D.6. Cohomology D.7. Examples Appendix E. Singularities and Intersections(written with Laurent Lazzarini) E.1. The main results E.2. Positivity of intersections E.3. Integrability E.4. The Hartman-Wintner theorem E.5. Local behaviour E.6. Contact between branches E.7. Singularities of J-holomorphic curves Bibliography List of Symbols Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网