Introduction
Chapter 1.Preliminaries
1.1.Bundles, connections and characteristic classes
1.1.1.Vector bundles and connections
1.1.2.Chern-Weil theory
1.2.Basic facts about elliptic equations
1.3.Clifford algebras and Dirac operators
1.3.1.Clifford algebras and their representations
1.3.2.The Spin and Spinc groups
1.3.3.Spin and spine structures
1.3.4.Dirac operators associated to spin and spinc structures
1.4.Complex differential geometry
1.4.1.Elementary complex differential geometry
1.4.2.Cauchy-Riemann operators
1.4.3.Dirac operators on almost Khler manifolds
1.5.Fredholm theory
1.5.1.Continuous families of elliptic operators
1.5.2 Genericity results
Chapter 2.The Seiberg-Witten Invariants
2.1.Seiberg-Witten monopoles
2.1.1.The Seiberg-Witten equations
2.1.2.The functional set-up
2.2.The structure of the Seiberg-Witten moduli spaces
2.2.1.The topology of the moduli spaces
2.2.2.The local structure of the moduli spaces
2.2.3.Generic smoothness
2.2.4.Orientability
2.3.The structure of the Seiberg-Witten invariants
2.3.1.The universal line bundle
2.3.2.The case b+ > 1
2.3.3.The case b+ = 1
2.3.4.Some examples
2.4.Applications
2.4.1.The Seiberg-Witten equations on cylinders
2.4.2.The Thom conjecture
2,4.3.Negative definite smooth 4-manifolds
Chapter 3.Seiberg-Witten Equations on Complex Surfaces
3.1.A short trip in complex geometry
3.1.1.Basic notions
3.1.2.Examples of complex surfaces
3.1.3.Kodaira classification of complex surfaces
3.2.Seiberg-Witten invariants of Khler surfaces
3.2.1.Seiberg-Witten equations on Kahler surfaces
3.2.2.Monopoles, vortices and divisors
3.2.3.Deformation theory
3.3.Applications
3.3.1.A nonvanishing result
3.3.2.Seiberg-Witten invariants of simply connected elliptic surfaces
3.3.3.The failure of the h-cobordism theorem in four dimensions
3.3.4.Seiberg-Witten equations on symplectic 4-manifolds