您好,欢迎来到聚文网。
登录
免费注册
网站首页
|
搜索
热搜:
购物车
0
我的订单
商品分类
首页
幼儿
文学
社科
教辅
生活
销量榜
线性代数
字数: 332
出版社: 清华大学
作者: 编者:周生彬//高妍南//高秀娥|责编:王芳//李晔
商品条码: 9787302600596
版次: 1
开本: 16开
页数: 207
出版年份: 2022
印次: 1
定价:
¥49
销售价:
登录后查看价格
¥{{selectedSku?.salePrice}}
库存:
{{selectedSku?.stock}}
库存充足
{{item.title}}:
{{its.name}}
加入购物车
立即购买
加入书单
收藏
精选
¥5.83
世界图书名著昆虫记绿野仙踪木偶奇遇记儿童书籍彩图注音版
¥5.39
正版世界名著文学小说名家名译中学生课外阅读书籍图书批发 70册
¥8.58
简笔画10000例加厚版2-6岁幼儿童涂色本涂鸦本绘画本填色书正版
¥5.83
世界文学名著全49册中小学生青少年课外书籍文学小说批发正版
¥4.95
全优冲刺100分测试卷一二三四五六年级上下册语文数学英语模拟卷
¥8.69
父与子彩图注音完整版小学生图书批发儿童课外阅读书籍正版1册
¥24.2
好玩的洞洞拉拉书0-3岁宝宝早教益智游戏书机关立体翻翻书4册
¥7.15
幼儿认字识字大王3000字幼儿园中班大班学前班宝宝早教启蒙书
¥11.55
用思维导图读懂儿童心理学培养情绪管理与性格培养故事指导书
¥19.8
少年读漫画鬼谷子全6册在漫画中学国学小学生课外阅读书籍正版
¥64
科学真好玩
¥12.7
一年级下4册·读读童谣和儿歌
¥38.4
原生态新生代(传统木版年画的当代传承国际研讨会论文集)
¥11.14
法国经典中篇小说
¥11.32
上海的狐步舞--穆时英(中国现代文学馆馆藏初版本经典)
¥21.56
猫的摇篮(精)
¥30.72
幼儿园特色课程实施方案/幼儿园生命成长启蒙教育课程丛书
¥24.94
旧时风物(精)
¥12.04
三希堂三帖/墨林珍赏
¥6.88
寒山子庞居士诗帖/墨林珍赏
¥6.88
苕溪帖/墨林珍赏
¥6.88
楷书王维诗卷/墨林珍赏
¥9.46
兰亭序/墨林珍赏
¥7.74
祭侄文稿/墨林珍赏
¥7.74
蜀素帖/墨林珍赏
¥12.04
真草千字文/墨林珍赏
¥114.4
进宴仪轨(精)/中国古代舞乐域外图书
¥24.94
舞蹈音乐的基础理论与应用
内容简介
线性代数主要研究有限维线性空间的结构和线 性空间上的线性变换,具有内容抽象、逻辑性强等 特点。该教材注重理论基础的同时结合实际问题及 Matlab软件阐明抽象理论背后的应用背景及数学直 观,重在培养学生的理论基础和实际应用能力,提 升学生对数学学习的兴趣。主要内容包括:线性方 程组和矩阵、行列式、向量组及矩阵的秩、向量空 间、特征值与相似矩阵、二次型、线性空间与线性 变换等。
作者简介
周生彬,博士,讲师,硕士生导师。本科和硕士毕业于延边大学理学院,数学系,博士毕业于中国人民大学统计学院,长期从事数学和统计学的教学,教学经验丰富。在国内外数学和统计学期刊上,如Electronic Journal of Statistics,Communications in Statistics - Theory and Methods,统计与决策等,发表过多篇学术论文。
目录
第 1章 线性方程组和矩阵 1.1 线性方程组 1.2 矩阵的定义 1.3 矩阵的运算 1.3.1 矩阵的加法 1.3.2 矩阵的数乘 1.3.3 矩阵的乘法 1.4 矩阵的转置 1.5 矩阵的逆 1.6 初等矩阵 1.7 分块矩阵 1.8 应用举例 1.9 MATLAB练习 1.10 习题 第 2章 行列式 2.1 矩阵的行列式 2.2 行列式的性质 2.3 n阶行列式的计算 2.4 逆矩阵的性质 2.5 克拉默法则 2.6 应用举例 2.7 MATLAB练习 2.8 习题 第 3章 向量组及矩阵的秩 3.1 向量组及其线性组合 3.2 向量组的线性相关性 3.3 向量组的秩 3.4 矩阵的秩及求法 3.5 线性方程组解的结构 3.5.1 齐次线性方程组解的结构 3.5.2 非齐次线性方程组解的结构 3.6 应用举例 3.7 MATLAB练习 3.8 习题 第 4章 向量空间 4.1 向量空间的概念 4.2 向量空间的基与维数 4.3 基变换与坐标变换 4.4 向量的内积与正交性 4.4.1 向量的内积 4.4.2 标准正交基 4.4.3 施密特正交化方法 4.5 应用举例 4.6 MATLAB练习 4.7 习题 第 5章 特征值与相似矩阵 5.1 特征值与特征向量 5.2 相似矩阵 5.3 实对称矩阵的对角化 5.4 应用举例
×
Close
添加到书单
加载中...
点此新建书单
×
Close
新建书单
标题:
简介:
蜀ICP备2024047804号
Copyright 版权所有 © jvwen.com 聚文网