您好,欢迎来到聚文网。
登录
免费注册
网站首页
|
搜索
热搜:
磁力片
|
漫画
|
购物车
0
我的订单
商品分类
首页
幼儿
文学
社科
教辅
生活
销量榜
C++树莓派机器人开发实战指南
字数: 537
出版社: 化学工业
作者: (美)劳埃德·布朗巴赫|译者:马培立//朱贵杰//陈绍平
商品条码: 9787122446138
版次: 1
开本: 16开
页数: 327
出版年份: 2024
印次: 1
定价:
¥198
销售价:
登录后查看价格
¥{{selectedSku?.salePrice}}
库存:
{{selectedSku?.stock}}
库存充足
{{item.title}}:
{{its.name}}
加入购物车
立即购买
加入书单
收藏
精选
¥5.83
世界图书名著昆虫记绿野仙踪木偶奇遇记儿童书籍彩图注音版
¥5.39
正版世界名著文学小说名家名译中学生课外阅读书籍图书批发 70册
¥8.58
简笔画10000例加厚版2-6岁幼儿童涂色本涂鸦本绘画本填色书正版
¥5.83
世界文学名著全49册中小学生青少年课外书籍文学小说批发正版
¥4.95
全优冲刺100分测试卷一二三四五六年级上下册语文数学英语模拟卷
¥8.69
父与子彩图注音完整版小学生图书批发儿童课外阅读书籍正版1册
¥24.2
好玩的洞洞拉拉书0-3岁宝宝早教益智游戏书机关立体翻翻书4册
¥7.15
幼儿认字识字大王3000字幼儿园中班大班学前班宝宝早教启蒙书
¥11.55
用思维导图读懂儿童心理学培养情绪管理与性格培养故事指导书
¥19.8
少年读漫画鬼谷子全6册在漫画中学国学小学生课外阅读书籍正版
¥64
科学真好玩
¥12.7
一年级下4册·读读童谣和儿歌
¥38.4
原生态新生代(传统木版年画的当代传承国际研讨会论文集)
¥11.14
法国经典中篇小说
¥11.32
上海的狐步舞--穆时英(中国现代文学馆馆藏初版本经典)
¥21.56
猫的摇篮(精)
¥30.72
幼儿园特色课程实施方案/幼儿园生命成长启蒙教育课程丛书
¥24.94
旧时风物(精)
¥12.04
三希堂三帖/墨林珍赏
¥6.88
寒山子庞居士诗帖/墨林珍赏
¥6.88
苕溪帖/墨林珍赏
¥6.88
楷书王维诗卷/墨林珍赏
¥9.46
兰亭序/墨林珍赏
¥7.74
祭侄文稿/墨林珍赏
¥7.74
蜀素帖/墨林珍赏
¥12.04
真草千字文/墨林珍赏
¥114.4
进宴仪轨(精)/中国古代舞乐域外图书
¥24.94
舞蹈音乐的基础理论与应用
内容简介
本书深入浅出地介绍了构建移动机器人平台所需的综合知识,涵盖了硬件和软件诸多方面。本书以清晰的学习路径和全面的底层逻辑为基石,帮助读者轻松地构建和编程机器人,避免了深入每个科目复杂部分的困难。书中聚焦于树莓派与硬件交互的编程,全面覆盖了从选用机器人控制器的微计算机(即树莓派)到为车轮驱动电机供电等系统性知识。读者可了解并掌握如何利用传感器检测障碍物、训练机器人建立地图并规划避障路径,以及实现代码的模块化和与其他机器人项目进行代码互换。此外,本书还详细阐述了如何运用树莓派的GPIO硬件接口端子和现有库,把树莓派转变成一个经济实用且性能卓越的机器人。 本书适合从事自动化、智能机器人、智能硬件、IOT领域的工程师以及树莓派爱好者阅读参考,无论是零基础的初学者,还是具备计算机科学、电气工程或机械工程背景的工程师或者高校师生,都能从本书中获益。你不仅能学习到驱动电机控制器的编程,还能了解从激光雷达数据构建地图、编写和实施自主路径规划算法、独立编写代码向电机驱动控制器发送路径点,以及更深入地学习机器人建图和导航的相关知识。
作者简介
无
目录
绪论 001 第1章 选择并构建一个机器人计算机 002 1.1 什么是树莓派? 002 1.1.1 树莓派和微控制器有什么区别呢? 003 1.1.2 树莓派是机器人控制器的唯一选择吗? 003 1.1.3 难道树莓派只是为学校、爱好者和玩具而设计的吗? 003 1.2 树莓派型号的概念和应用以及为什么不是所有型号都能适合我们的需求 004 1.2.1 为什么树莓派型号不能适合我们所有的目的? 004 1.2.2 树莓派Zero型和树莓派Zero W型 005 1.2.3 树莓派2B型 006 1.2.4 树莓派3B型——最好的选择 006 1.2.5 树莓派3B+型 007 1.2.6 树莓派4代 007 1.3 操作系统的选择 007 1.3.1 Raspbian 008 1.3.2 Ubuntu 008 1.4 操作系统的安装和设置 009 1.4.1 在笔记本电脑或台式电脑上安装完整的Ubuntu桌面操作系统 010 1.4.2 在树莓派上安装Lubuntu系统 010 1.5 编程环境(IDE)的安装和设置 013 1.5.1 在笔记本电脑或台式电脑上安装VS Code 013 1.5.2 在树莓派上安装Code::Blocks 014 1.6 总结 015 1.7 问题 015 第2章 GPIO硬件接口引脚的概述及使用 016 2.1 简介 016 2.2 什么是GPIO引脚 016 2.3 GPIO到底是做什么的呢? 018 2.4 程序员的电子学 018 2.5 输出数据的类型 021 2.6 输入数据的类型 022 2.7 一些常见的电子硬件 024 2.7.1 面包板 024 2.7.2 作为输出的GPIO引脚 027 2.7.3 两种引脚编号系统 028 2.7.4 作为输入的GPIO引脚 028 2.8 使用C++程序访问树莓派的GPIO 030 2.8.1 安装PIGPIO 030 2.8.2 安装和设置PIGPIO库 031 2.8.3 确保Code::Blocks可以链接到PIGPIO 031 2.8.4 运行PIGPIO程序 032 2.9 我们的第一个GPIO项目——hello_blink 032 2.10 控制数字输出的数字输入——hello_button 034 2.11 GPIO事件的回调函数 036 2.12 结论 038 第3章 机器人平台 039 3.1 简介 039 3.2 目标 039 3.3 考虑机器人的尺寸大小和运行环境 040 3.4 差速驱动与阿克曼(Ackerman)转向的对比 041 3.4.1 差速驱动 042 3.4.2 阿克曼(Ackerman)转向 042 3.5 现成的机器人平台 042 3.5.1 大型的预搭建机器人 042 3.5.2 小型的预搭建机器人 043 3.6 自制机器人的技巧 044 3.6.1 搭建材料 045 3.6.2 电池 045 3.6.3 传动系统 045 3.6.4 机器人零件来源 046 3.7 改装扫地机器人或遥控车 047 3.7.1 带有接口的扫地机器人 047 3.7.2 与Roomba机器人对接 048 3.7.3 唤醒你的Roomba机器人 051 3.7.4 不带接口的扫地机器人 051 3.7.5 改装遥控车和卡车 052 3.8 总结 053 3.9 问题 053 第4章 机器人电机类型和电机控制 054 4.1 简介 054 4.2 目标 054 4.3 电机的类型 055 4.3.1 交流(AC)电机与直流(DC)电机 055 4.3.2 有刷直流电机 056 4.3.3 伺服电机 056 4.3.4 步进电机 057 4.3.5 无刷直流电机(又称为BLDC) 058 4.4 晶体管和电机驱动器的介绍 058 4.4.1 最基本的控制:开/关 058 4.4.2 晶体管 059 4.5 脉冲宽度调制(PWM) 061 4.5.1 用PWM来创造模拟电压 061 4.5.2 PWM作为控制信号 062 4.6 电机驱动器和电机控制器 063 4.6.1 电机驱动器 063 4.6.2 用L298N双H桥电机驱动器控制电机 065 4.7 电机控制器 067 4.8 结论 068 4.9 问题 068 4.10 挑战 068 第5章 与传感器和其他设备通信 069 5.1 简介 069 5.2 目标 069 5.3 二进制(逻辑)信号 069 5.3.1 开关去抖动 070 5.3.2 轮式编码器 071 5.3.3 来自模拟传感器的二进制信号 071 5.3.4 二进制通信简介 072 5.4 串行通信入门 072 5.4.1 UART串行通信 072 5.4.2 设置树莓派并测试UART串行通信 073 5.4.3 修复打开串行端口时的错误 076 5.5 I2C通信入门 076 5.5.1 在树莓派上设置和使用I2C设备 077 5.5.2 示例和测试程序:hello_i2c_lsm303 078 5.6 结论 081 5.7 问题 081 第6章 其他有用的硬件 082 6.1 简介 082 6.2 目标 082 6.3 电源 083 6.3.1 5V电源 083 6.3.2 可调电源 083 6.4 继电器模块 084 6.5 逻辑电平转换器 084 6.6 FTDI芯片 085 6.7 Arduino微控制器 086 6.8 Digispark微控制器 086 6.9 总结 087 6.10 问题 087 第7章 添加计算机来控制机器人 088 7.1 简介 088 7.2 结构 088 7.3 目标 089 7.4 步骤 089 7.4.1 安装计算机并为其供电 089 7.4.2 将计算机与机器人的其他组件相连 090 7.5 结论 091 7.6 问题 092 第8章 机器人的控制策略 093 8.1 简介 093 8.2 结构 093 8.3 目标 093 8.4 机器人控制:全局与局部 094 8.5 基本控制回路 095 8.5.1 观察和比较 095 8.5.2 响应 095 8.5.3 影响 096 8.6 开环控制器和闭环控制器 097 8.6.1 设计一个大局观控制器(也称为主控制器) 098 8.6.2 设计一个局部控制器(也称为进程控制器) 100 8.7 结论 104 8.8 问题 104 第9章 协调各个部件 105 9.1 简介 105 9.2 结构 105 9.3 目标 106 9.4 什么是机器人操作系统? 106 9.5 ROS与编写机器人控制软件 106 9.6 ROS和商业机器人产业 107 9.7 ROS的设置 107 9.7.1 在你笔记本电脑或台式机上安装ROS Melodic 108 9.7.2 在你的树莓派3B上安装ROS Kinetic 108 9.8 ROS概述和速成课程 110 9.9 一些有用的建议 115 9.10 创建和编写ROS包和节点 116 9.10.1 ROS文件系统 116 9.10.2 创建ROS包 116 9.10.3 编写ROS程序(节点) 117 9.10.4 下载、审阅和运行章节下载程序 123 9.11 使用roslaunch和.launch来简化工作 124 9.12 结论 124 9.13 问题 125 第10章 用于机器人导航的地图构建 126 10.1 简介 126 10.2 目标 127 10.3 角度、航向和距离等常规参数的规则 127 10.4 接收传感器数据 128 10.5 占用栅格地图(OGM) 129 10.6 用传感器数据构建占用栅格地图(OGM) 131 10.6.1 标记被占用的单元格 134 10.6.2 标记空闲单元格 136 10.6.3 完成建图 136 10.6.4 将地图作为ROS消息发布 136 10.7 ROS中的变换 138 10.7.1 理解变换 138 10.7.2 ROS中如何使用变换 139 10.7.3 使用静态变换发布器发布变换 140 10.7.4 用变换广播器从节点向外发布变换 141 10.7.5 在节点中获得转换数据 142 10.7.6 从命令行查看变换数据 143 10.8 用Gmapping绘制地图 143 10.8.1 Gmapping 143 10.8.2 下载Gmapping 144 10.8.3 运行Gmapping和启动文件中的参数 144 10.8.4 创建地图的步骤 145 10.9 用Rviz实现地图的可视化 146 10.10 保存地图并在以后使用 147 10.10.1 保存地图 147 10.10.2 加载先前保存的地图 148 10.11 总结 148 10.12 问题 149 第11章 机器人跟踪和定位 150 11.1 简介 150 11.2 目标 150 11.3 机器人位姿 151 11.3.1 将欧拉角转换为四元数 152 11.3.2 将四元数转换为欧拉角 153 11.4 里程计算和航迹推算 153 11.4.1 轮速计 154 11.4.2 计算每个轮子行驶的距离 156 11.4.3 计算机器人移动的总距离 157 11.4.4 计算航向角的变化 157 11.4.5 将机器人中的朝向变化添加到原来的朝向上 158 11.4.6 计算在x和y方向上移动的距离(也被叫作转换) 158 11.4.7 将计算的距离添加到前一个姿态估计中 158 11.4.8 航位推测 159 11.5 在ROS中发布姿态数据 160 11.6 里程计数据变换发布 162 11.7 进一步跟踪和定位 164 11.8 基准点 164 11.9 激光特征跟踪和定位 165 11.10 GPS和GNSS 166 11.11 基于信标的定位系统 166 11.12 总结 167 11.13 问题 167 第12章 自主运动 168 12.1 简介 168 12.2 目标 168 12.3 ROS机器人运动综述 168 12.4 电机控制器——simple_diff_drive.cpp 169 12.4.1 simple_diff_drive电机控制器的代码步骤 170 12.4.2 差动驱动电机控制器代码概述 170 12.4.3 差动电机控制器代码 171 12.5 驱动器控制器:simple_drive_controller.cpp 176 12.6 结论 180 12.7 问题 180 第13章 自主路径规划 181 13.1 简介 181 13.2 目标 181 13.3 路径规划方法与挑战 181 13.3.1 挑战 182 13.3.2 路径规划方法 182 13.4 障碍物膨胀 183 13.4.1 代价地图 183 13.4.2 costmap_2d包 184 13.5 A*路径规划 186 13.5.1 A*是如何工作的 187 13.5.2 A*算法的步骤 189 13.5.3 完成A*程序 190 13.6 将A*程序写成ROS节点 194 13.6.1 标准内容、辅助函数和main() 195 13.6.2 A*节点的核心:find_path() 203 13.7 结论 207 13.8 问题 208 第14章 里程计的轮式编码器 209 14.1 简介 209 14.2 目标 209 14.3 轮式编码器 209 14.4 光电编码器 210 14.5 霍尔效应编码器 210 14.6 编码器的接线 211 14.7 编码器tick信号发布——tick_publisher.cpp 212 14.8 结论 216 14.9 问题 216 第15章 超声波测距仪 217 15.1 简介 217 15.2 目标 217 15.3 HC-SR04超声波测距传感器基础知识 218 15.4 HC-SR04的接线 218 15.5 超声波范围数据发布器——ultrasonic_publisher. cpp 219 15.5.1 超声波范围数据发布者步骤 219 15.5.2 超声波范围数据发布者代码 220 15.6 用于物体探测的超声波范围数据 222 15.7 结论 223 15.8 问题 223 第16章 惯性测量单元——加速度计,陀螺仪和磁力计 224 16.1 简介 224 16.2 目标 225 16.3 加速度计 225 16.3.1 加速度计的缺点 226 16.3.2 在ROS中发布IMU数据 226 16.3.3 ROS中sensor_msgs::Imu数据类型 226 16.3.4 IMU消息发布者代码 228 16.4 陀螺仪 230 16.4.1 陀螺仪的缺点 231 16.4.2 向IMU节点添加陀螺仪数据 231 16.5 磁力计 232 16.5.1 磁力计的缺点 232 16.5.2 向IMU节点添加磁力计数据 232 16.6 安装IMU 234 16.7 总结 234 16.8 问题 234 第17章 GPS和外部信标系统 235 17.1 简介 235 17.2 目标 235 17.3 信标系统是如何工作的 236 17.4 GPS和GNSS基础知识 237 17.5 2cm精度级的GPS/GNSS-RTK 238 17.6 GPS/GNSS的局限性 239 17.7 GPS/GNSS数据格式 240 17.7.1 NMEA 数据字符串 240 17.7.2 一些关键的纬度/经度数据表示法 241 17.8 在ROS中发布GPS/GNSS数据 242 17.8.1 ROS软件包:nmea_navsat_driver 242 17.8.2 安装 nmea_navsat_driver包 243 17.8.3 阅读ROS软件包说明 243 17.8.4 运行带参数的nmea_serial_driver节点 244 17.9 总结 245 17.10 问题 245 第18章 激光雷达设备和数据 246 18.1 简介 246 18.2 目标 246 18.3 激光雷达基础知识 247 18.4 激光雷达的局限性 247 18.5 激光雷达的种类 248 18.5.1 单向(单点)激光雷达 248 18.5.2 2D激光雷达 248 18.5.3 3D激光雷达 249 18.5.4 从机器人吸尘器中获得激光雷达 249 18.6 选择激光雷达考虑的因素 250 18.7 激光雷达数据消息格式sensor_msgs:: LaserScan 251 18.8 激光雷达安装注意事项 253 18.9 配置、运行和测试一个普通的激光雷达装置 254 18.10 LaserScan信息的可视化 255 18.11 总结 258 18.12 问题 258 第19章 相机的实时视觉 259 19.1 简介 259 19.2 目标 259 19.3 图像是什么 260 19.3.1 图像属性 260 19.3.2 像素坐标系 261 19.3.3 检查并安装所需软件 261 19.3.4 ROS Kinetic 262 19.3.5 ROS Melodic 262 19.3.6 在ROS中测试OpenCV 263 19.4 图像处理软件(OpenCV)和ROS 264 19.4.1 步骤1:在ROS上发布图片 264 19.4.2 安装usb_cam_node 265 19.4.3 运行usb_cam_node 265 19.4.4 测试相机输出 266 19.4.5 步骤2:在其他节点订阅图片 267 19.4.6 创建你的ROS视觉包 267 19.4.7 编写图像消息订阅者 268 19.4.8 步骤3:使用cv-bridge将ROS使用的RGB图像转化成OpenCV可处理的BGR图像 269 19.4.9 步骤4:对图像实施希望的操作 269 19.4.10 步骤5:发布任何非图像数据作为自身的ROS信息 270 19.4.11 步骤6:将处理后的图像转化回RGB格式 270 19.4.12 步骤7:在所属话题下发布结果图像 270 19.4.13 更多图片处理基础 271 19.4.14 核算子、孔径与块 271 19.5 使用图片副本而不是原图像的重要性 272 19.5.1 关于光照的问题 272 19.5.2 重新审视步骤4——更多可能的OpenCV操作 272 19.5.3 图片色彩格式转换函数:cvtColor() 273 19.5.4 图片滤波函数:blur(),medianBlur(),GaussianBlur() 273 19.5.5 图片边缘检测函数:Canny() 274 19.6 将图像上的边缘变为数字线条:HoughLinesP() 275 19.7 图片颜色空间转换函数:cvtColor()与inRange() 280 19.8 各式各样有用的ROS工具 283 19.9 高级OpenCV与进阶 283 19.10 基于云的图像识别 284 19.11 结论 284 19.12 问题 284 第20章 传感器融合 285 20.1 简介 285 20.2 目标 285 20.3 如何让传感器融合变得简单 286 20.4 博世BN0055绝对方向传感器 286 20.5 改进后的测距仪 287 20.6 集成BN0055——硬件和ROS发布者 288 20.7 整合BN0055——测距节点 289 20.7.1 第1步:订阅IMU信息 289 20.7.2 第2步:确认方向没有被标记为不使用 289 20.7.3 第3步:将四元数转换成欧拉角 290 20.7.4 第4步:如果是第一个IMU 信息,则保存偏移信息 290 20.7.5 第5.1步:如果不是第一条IMU信息,则保存 IMU航向 291 20.7.6 第5.2步:将新的航向应用于里程计中 291 20.8 第二代传感器融合——一种更全面的方法 292 20.9 协方差矩阵 293 20.10 ROS信息中的协方差矩阵 295 20.11 robot_pose_ekf节点 296 20.11.1 安装robot_pose_ekf 296 20.11.2 运行robot_pose_ekf 296 20.12 关于变换和roslaunch的最后说明 298 20.13 结论 298 20.14 问题 298 第21章 构建并完成一个自主的机器人的编程 299 21.1 简介 299 21.2 目标 300 21.3 第1部分——构建物理机器人平台 300 21.3.1 机器人平台——总体概览和零件清单 301 21.3.2 车轮/电机模块 302 21.3.3 电机驱动器 303 21.3.4 轮毂 303 21.3.5 电池和充电器 303 21.3.6 底盘/底座 304 21.3.7 计算机 305 21.3.8 激光雷达或其他测距传感器 305 21.3.9 轮式编码器 306 21.3.10 IMU 306 21.3.11 计算机的电压转换器 306 21.3.12 GPIO集线器分线板 307 21.3.13 相机 307 21.3.14 电压表 307 21.3.15 其他材料 308 21.3.16 安装机器人平台 308 21.3.17 安装轮毂模块和脚轮 310 21.3.18 安装电机驱动器、端子排和计算机电源 311 21.3.19 准备好GPIO分线板 311 21.3.20 安装计算机、GPIO分线板和IMU 312 21.3.21 完成布线并安装电池 312 21.3.22 安装激光雷达和摄像头 312 21.4 第1部分——结论 313 21.5 第2部分——为机器人编程 314 21.5.1 程序设计——总览 314 21.5.2 为你的机器人编程——详细步骤 315 21.5.3 运行你的自主机器人! 324 21.5.4 一些故障排除提示 324 21.6 下一步需要是什么? 325 21.6.1 动态避障 325 21.6.2 PID控制器 326 21.6.3 一个主控制器,管理各种程序或任务 326 21.6.4 实现从地图到地图的转换(完全定位) 326 21.6.5 请关注facebook.com/practicalrobotics和 youtube.com/practicalrobotics 326 21.7 结论 327
×
Close
添加到书单
加载中...
点此新建书单
×
Close
新建书单
标题:
简介:
蜀ICP备2024047804号
Copyright 版权所有 © jvwen.com 聚文网