Preface
Chapter 1.Functional Framework
1.1.Basic Notation
1.2.Functional Analysis Results
1.3.H?lder Spaces
1.4.Lebesgue Spaces
1.5.Sobolev Spaces
1.6.Orthogonal Bases in Hm(RN)
1.7.Sobolev Spaces Involving Time
Chapter 2.Linear Equations
2.1.Introduction
2.2.The Hyperbolic Cauchy Problem
2.3.Proof of Theorem 2.2.1
2.4.Weak Solutions
2.5.The Parabolic Cauchy Problem
Chapter 3.Quasi-linear Equations
3.1.Introduction
3.2.The Hyperbolic Cauchy Problem
3.3.Proof of Theorem 3.2.1
3.4.The Parabolic Cauchy Problem
Chapter 4.Global Existence
4.1.Introduction
4.2.Life Span of Solutions
4.3.Non Dissipative Finite Time Blow-Up
4.4.Almost Global Existence
4.5.Global Existence for Dissipative Equations
4.6.The Parabolic Problem
Chapter 5.Asymptotic Behavior
5.1.Introduction
5.2.Convergence uhyp(t) →usta
5.3.Convergence upar(t) →usta
5.4.Stability Estimates
5.5.The Diffusion Phenomenon
Chapter 6.Singular Convergence
6.1.Introduction
6.2.An Example from ODEs
6.3.Uniformly Local and Global Existence
6.4.Singular Perturbation
6.5.Almost Global Existence
Chapter 7. Maxwell and von Karman Equations
7.1.Maxwell's Equations
7.2.von Karman's Equations
List of Function Spaces
Bibliography
Index