您好,欢迎来到聚文网。 登录 免费注册
二维二次非线性系统:单变量向量场(英文版)Two-Dimensional Quadratic Nonlinear Syst

二维二次非线性系统:单变量向量场(英文版)Two-Dimensional Quadratic Nonlinear Syst

  • 字数: 980
  • 出版社: 高等教育
  • 作者: 罗朝俊|责编:吴晓丽
  • 商品条码: 9787040604955
  • 版次: 1
  • 开本: 16开
  • 页数: 685
  • 出版年份: 2023
  • 印次: 1
定价:¥199 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书的重点是基于向量 场和一元二次函数的非线性 动力学。本书从不同视角研 究非线性动力学和二次动力 系统的分岔。二维动力系统 是非线性动力学中最简单的 动力系统之一,但二维二次 系统中平衡点和流的局部与 全局结构有助于我们理解其 他非线性动力系统,这也是 解决希尔伯特第十六问题的 关键一步。本书详细探论了 二维二次系统可能存在的奇 异动力学问题;介绍了二维 系统中平衡态和一维流的动 力学;讨论了鞍形汇和鞍形 源分岔,给出了鞍形中心分 岔;提出了无限平衡态是非 线性系统的开关分岔;从第 一类积分流形出发,发展了 鞍焦点网络,并给出了鞍、 源和汇网络。 本书可作为动力系统和 控制专业的参考书,适合数 学、机械和电气工程领域的 研究人员、学生和工程师阅 读参考。
作者简介
罗朝俊教授为美国南伊利诺伊州州立大学终身教授、国际非线性系统领域知名学者。
目录
1 Two-Dimensional Linear Dynamical Systems 1.1 Constant Vector Fields 1.2 Linear Vector Fields with a Single Variable 1.3 Variable-Independent Linear Vector Fields 1.4 Variable-Crossing Linear Vector Fields 1.5 Two Linear-Bivariate Vector Fields Reference 2 Single-Variable Quadratic Systems with a Self-Univariate Quadratic Vector Field 2.1 Constant and Self-Univariate Quadratic Vector Fields 2.1.1 Self-Univariate Quadratic Systems with a Constant 2.1.2 Singular Flows and Bifurcations 2.2 Linear and Self-Univariate Quadratic Vector Fields 2.2.1 Linear and Self-Univariate Quadratic Systems 2.2.2 Flow Switching and Appearing Bifurcations 2.3 Single-Variable Quadratic Systems with a Self-Uni-variate Vector Field 2.3.1 Variable-Crossing and Self-Univariate Quadratic 2.4 Singular Dynamics and Bifurcations Reference 3 Single-Variable Quadratic Systems with a Non-Self-Univariate Quadratic Vector Field 3.1 Constant and Non-Self-Univariate Quadratic Vector Fields 3.1.1 Non-Self-Univariate Quadratic Systems with a Constant Vector Field 3.1.2 Singular Flows and Bifurcations 3.2 Linear and Non-Self-Univariate Quadratic Vector Fields 3.2.1 Linear and Non-Self-Univariate Quadratic Systems 3.2.2 Flow Switching and Appearing Bifurcations 3.3 With a Non-Self-Univariate Quadratic Vector Field 3.3.1 Quadratic Systems with a Non-Self-Univariate Vector Field 3.3.2 Singular Dynamics and Bifurcations Reference 4 Variable-Independent Quadratic Dynamics 4.1 Constant and Variable-Independent Quadratic Vector Fields 4.2 Variable-Independent, Linear and Quadratic Vector Fields 4.2.1 Variable-Independent, Linear and Quadratic Systems 4.2.2 Saddle-Node Bifurcations and Global Dynamics 4.3 Two Variable-Independent Univariate Quadratic Vector Fields 4.3.1 Two Variable-Independent Quadratic Global Dynamics 4.3.2 Singularity and Bifurcations Reference 5 Variable-Crossing Univariate Quadratic Systems 5.1 Constant and Variable-Crossing Univariate Vector Fields 5.2 Linear and Quadratic Variable-Crossing Vector Fields 5.2.1 Linear and Quadratic Variable-Crossing Systems 5.2.2 Bifurcations and Limit Cycles 5.3 Two Variable-Crossing Univariate Quadratic Vector Fields 5.3.1 Two Variable-Crossing Univariate Quadratic Systems 5.3.2 Bifurcations and Global Dynamics Reference 6 Two-Univariate Product Quadratic Systems 6.1 Two-Univariate Product Quadratic Dynamics 6.2 Dynamics for Two-Univariate-Product Quadratic Systems

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网