Chapter 1 Vector Analysis(矢量分析)
1.1 Introduction(引言)
1.2 Vector Representation(矢量的表示方式)
1.3 Addition and Subtraction(矢量的加减法)
1.4 Products of Vectors(矢量乘积)
1.4.1 Multiplication by scalars(数乘)
1.4.2 Dot Produet/Scalar Product(点积/标量积)
1.4.3 Cross Product/Vector Product(叉积/矢量积)
1.4.4 Scalar and vector triple products(标量/矢量三重积)
1.5 Orthogonal Coordinate Systems(正交坐标系)
1.5.1 Cartesian Coordinates(笛卡儿坐标)
1.5.2 Cylindrical Coordinates(圆柱坐标)
1.5.3 Spherical Coordinates(圆球坐标)
1.6 Integrals of Vector Fields(矢量场的积分)
1.7 Gradient of a Scalar Field(标量场的梯度)
1.8 Divergence of a Vector Field(矢量场的散度)
1.9 Divergence Theorem(散度定理)
1.10 Curl of a Vector Field(矢量场的旋度)
1.11 Stokes's Theorem(斯托克斯定理)
1.12 Laplacian Operator(拉普拉斯算子)
1.13 Curl-free and Divergence-free Fields(无旋场与无散场)
1.14 Helmholtz's Theorem(亥姆霍兹定理)
Summary
Review Questions
Problems
Chapter 2 Static Electric Fields(静电场)
2.1 Introduction(引言)
2.2 Electric Fields and Charges(电场与电荷)
2.2.1 Electric Fields Due to Discrete Charges(离散电荷产生的电场)
2.2.2 Electric Fields Due to Continuous Charge Distributions(连续分布电荷产生的电场)
2.3 Divergence of Electrostatic Fields and Gauss's Law(静电场的散度与高斯定律)
2.4 Curl of Electrostatic Fields and Electric Potential(静电场的旋度与电位)
2.4.1 Electric Potential Due to Diserete Charges(离散电荷产生的电位)
2.4.2 Electric Potential Due to a Continuous Charge Distribution(连续分布电荷产生的电位)
2.5 Conductors in Static Electric Field(静电场中的导体)
2.6 Dielectrics in Static Electric Fields(静电场中的介质)
2.7 Electric Flux Density and Gauss's Law(电通密度与高斯定律)
2.8 Boundary Conditions for Electrostatic Fields(静电场的边界条件)
2.9 Capacitance and Capacitors(电容)
2.10 Electrostatic Energy(静电能)
2.10.1 Electrostatic Energy in Terms of Charge and Potential(电荷与电位表示的静电能)
2.10.2 Electrostatic Energy in Terms of Electric Field Quantities(电场表示的静电能)
Summary
Review Questions
Problems
Chapter 3 Solution of Electrostatic Boundary Value Problems(静电场边界值问题求解)
3.1 Introduction(引言)
3.2 Poisson's and Laplace's Equations(泊松方程、拉普拉斯方程)
3.3 Uniqueness of Electrostatic Solutions(静电场解的唯一性)
3.4 Method of Images(镜像法)