1 Local Theory
1.1 Holomorphic Functions of Several Variables
1.2 Complex and Hermitian Structures
1.3 Differential Forms
2 Complex Manifolds
2.1 Complex Manifolds: Definition and Examples
2.2 Holomorphic Vector Bundles
2.3 Divisors and Line Bundles
2.4 The Projective Space
2.5 Blow-ups
2.6 Differential Calculus on Complex Manifolds
3 Kahler Manifolds
3.1 Kahler Identities
3.2 Hodge Theory on Kahler Manifolds
3.3 Lefschetz Theorems
Appendix
3.A Formality of Compact Kahler Manifolds
3.B SUSY for Kahler Manifolds
3.C Hodge Structures
4 Vector Bundles
4.1 Hermitian Vector Bundles and Serre Duality
4.2 Connections
4.3 Curvature
4.4 Chern Classes
Appendix
4.A Levi-Civita Connection and Holonomy on Complex Manifolds
4.B Hermite-Einstein and Kahler-Einstein Metrics
5 Applications of Cohomology
5.1 Hirzebruch-Riemann-Roch Theorem
5.2 Kodaira Vanishing Theorem and Applications
5.3 Kodaira Embedding Theorem
Deformations of Complex Structures
6.1 The Maurer-Cartan Equation
6.2 General Results
Appendix
6.A dGBV-Algebras
A Hodge Theory on Differentiable Manifolds
B Sheaf Cohomology
References
Index