您好,欢迎来到聚文网。 登录 免费注册
复分析 第4版

复分析 第4版

  • 字数: 500
  • 出版社: 世界图书出版公司
  • 作者: (美)S.朗(S.Lang)
  • 商品条码: 9787506260060
  • 版次: 1
  • 开本: 16开
  • 页数: 485
  • 出版年份: 2021
  • 印次: 1
定价:¥119 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
本书共十六章,书中全 面论述了复分析的基本理论 和许多论题,如黎曼映射定 理、γ函数、解析开拓。本 书前半部分内容适用于数学 系本科生复分析一学期课程 。后半部分适用于研究生专 题课程。与第2版相比,本 版内容做了较大改动,页数 增加了120页。
目录
Foreword Prerequisites PART ONE Basic Theory CHAPTER Ⅰ Complex Numbers and Functions 1.Definition 2.Polar Form 3.Complex Valued Functions 4.Limits and Compact Sets Compact Sets 5.Complex Differentiability 6.The Cauchy-Riemann Equations 7.Angles Under Holomorphic Maps CHAPTER Ⅱ Power Series 1.Formal Power Series 2.Convergent Power Series 3.Relations Between Formal and Convergent Series Sums and Products Quotients Composition of Series 4.Analytic Functions 5.Differentiation of Power Series 6.The Invelse and Open Mapping Theorems 7.The Local Maximum Modulus Principle CHAPTER Ⅲ Cauchy's Theorem, First Part 1.Holomorphic Functions on Connected Sets Appendix: Connectedness 2.Integrals Oer Paths 3.Local Primitive for a Holomorphic Function 4.Ancther Description of 1he Integral Along a Path 5.The Homotopy Form of Cauchy's Theorem 6.Existence of Global Primitives.Definition of the Logarithm 7.The Local Cauchy Formula CHAPTER Ⅳ Winding Numbers and Cauchy's Theorem 1.The Winding Number 2.The Global Catchy Theorem Dixon's PIocf of Theorem 2.5 (Cauchy's Formula) 3.Artin's Proof CHAPTER Ⅴ Applications 1 Cauchy's Integral Formula 1.Uniform Limits of Analytic Functions 2.Lament Series 3.Isolated Singularities Removable Singularities Poles E sential Singularities CHAPTER Ⅵ Calculus ot Residues 1.The Residue Formula Residues of Differentials 2.Evaluation of Definite Integrals Fourier Transforms Trigonometric Integrals Mellin Transforms CHAPTER Ⅶ Conlormsl Mappings 1.Schwarz Lemma 2.Analytic Automorphisms of the Dic 3.The Upper Half Plane 4.Olher Examples 5.Fractional Linear Transformations CHAPTER Ⅷ Harmonic Functions 1.Definition Application: Perpendicularity Application: Flow Lines 2.Examples 3.Basic Properties of Harmonic Functions 4.The Poisson Formula The Poisson Integral as a Convolution 5.Construction of Harmonic Furctions 6.Appendix. Differentiating Under the Integral Sign PART TWO Geometric Function Theory CHAPTER Ⅸ Schwarz Reflection 1.Schwarz Reflection (by Complex Conjugation) 2.Reflection Across Analytic Arcs 3.Application cf Schwatz Reflection CHAPTER Ⅹ The Riemann Mapping Theorem 1.Statement of the Theorem 2.Compact Sets in Function Spces 3.Proof cf the Riemann Mapping Theorem 4.Behavior at the Boundary CHAPTER Ⅺ Analytic Continuation Along Curves 1.Continuation Along a Curve 2.The Dilogarithm 3.Application lo Picard's Theorem PART THREE Various Analytic Topics CHAPTER Ⅻ Applications of the Maximum Modulus Principle and Jensen's Formula 1.Jensen's Formula 2.The Picard-Borel Theorem 3.Bounds by the Real Part, Borel-Carathrodory Theorem 4.The Use cf Three Circles and the Effect of Small Derivatives Hermite Interpolation Formula 5.Entire Functions with Rational Valves 6.The Phragmen-Lindelrf and Hadamard Theorems CHAPTER ⅩⅢ Entire and Meromorphic Functions 1.Infinite Products 2.Weierstrass Products 3.Functions of Finite Order 4.Meromorphic Functions, Mittag-Leffler Theorem CHAPTER XIV Elliptic Functions 1.The Liouville Theorems 2.The Weierstrass Function 3.The Addition Theorem 4.The Sigma and Zeta Functions CHAPTER ⅩⅤ The Gamma and Zeta Functions 1.The Differentiation Lemma 2.The Gamma Function Weierstrass Product The Gauss Multiplication Formula (Distribution Relation) The (Other) Gauss Formula The Mellin Transform The Starling Formula Proof of Starling's Formula 3.The Lerch Formula 4.Zeta Functions CHAPTER ⅩⅥ The Prime Number Theorem 1.Basic Analytic Properties of

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网