CHAPTER 1
Introduction: Differential Equations and Dynamical Systems
1.1 Existence and Uniqueness of Solutions
1.1 The Linear System x = Ax
1.2 Flows and Invariant Subspaces
1.3 The Nonlinear System x = f (x)
1.4 Linear and Nonlinear Maps
1.5 Closed Orbits, Poincare Maps.and Forced Oscillations
1.6 Asymptotic Behavior
1.7 Equivalence Relations and Structural Stability
1.8 Two-Dimensional Flows
1.9 Peixoto's Theorem for Two-Dimensional Flows
CHAPTER 2
An Introduction to Chaos: Four Examples
2.1 Van der Pol's Equation
2.2 Duffing's Equaiion
2.3 The Lorenz Equations
2.4 The Dynamics of a Bouncing Ball
2.5 Conclusions: The Moral of the Tales
CHAPTER 3
Local Bifurcations
3.1 BiFurcation Problems
3.2 Center Manifolds
3.3 Normal Forms
3.4 Codimension One Bifurcations of Equilibria
3.5 Codimension One Bifurcations of Maps and Periodic Orbits
CHAPTER 4
Averaging and Perturbation from a Geometric Viewpoint
4.1 Averaging and Poincare Maps
4.2 Examples of Averaging
4.3 Averaging and Local Bifurcations
4.4 Averaging, Hamikonian Systems, and Global Behavior: Cautionary Notes
4.5 Melnikov's Method: Perturbations of Planar Homoclinic Orbits
4.6 Melnikov's Method: Perturbations of Hamiltonian Systems and Subharmonic Orbits
4.7 Stability or Subharmonic Orbits
4.8 Two Degree of Freedom Hamiltonians and Area Preserving Maps of the Plane
CHAPTER 5
Hyperbolic Sets, Symbolic Dynamics, and Strange Attractors
5.0 Introduction
5.1 The Smale Horseshoe: An Example of a Hyperbolic Limit Set
5.2 Invariant Sets and Hyperbolicity
5.3 Markov Partitions and Symbolic Dynamics
5.4 Strange Auractors and the Stability Dogma
5.5 Structurally Stable Attractors
5.6 One-Dimensional Evidence for Strange Attractors
5.7 The Geometric Lorenz Attractor
5.8 Statistical Properties: Dimension, Entropy, and Liapunov Exponents
CHAPTER 6
Global Bifurcations
6.1 Saddle Connections