您好,欢迎来到聚文网。 登录 免费注册
非线性振动动力学系统和矢量场的分叉(英文版)

非线性振动动力学系统和矢量场的分叉(英文版)

  • 字数: 384
  • 出版社: 世界图书出版公司
  • 作者: (美)J.古肯海默//P.霍姆斯
  • 商品条码: 9787519226176
  • 版次: 1
  • 开本: 24开
  • 页数: 459
  • 出版年份: 2017
  • 印次: 1
定价:¥78 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
J.古肯海默、P.霍姆斯著的《非线性振动动力 学系统和矢量场的分叉(英文版)》是论述动力学系 统、分叉理论与非线性振动研究之间接口部分的理 论专著,主要讨论以欧氏空间微分流形为相空间, 以及常微分方程组和映象集为数学模型的问题。本 书初版于1983年,本版是2002第7次修订版,该书出 版三十余年来倍受读者欢迎,是混沌动力学的经典 教材。
目录
CHAPTER 1 Introduction: Differential Equations and Dynamical Systems 1.1 Existence and Uniqueness of Solutions 1.1 The Linear System x = Ax 1.2 Flows and Invariant Subspaces 1.3 The Nonlinear System x = f (x) 1.4 Linear and Nonlinear Maps 1.5 Closed Orbits, Poincare Maps.and Forced Oscillations 1.6 Asymptotic Behavior 1.7 Equivalence Relations and Structural Stability 1.8 Two-Dimensional Flows 1.9 Peixoto's Theorem for Two-Dimensional Flows CHAPTER 2 An Introduction to Chaos: Four Examples 2.1 Van der Pol's Equation 2.2 Duffing's Equaiion 2.3 The Lorenz Equations 2.4 The Dynamics of a Bouncing Ball 2.5 Conclusions: The Moral of the Tales CHAPTER 3 Local Bifurcations 3.1 BiFurcation Problems 3.2 Center Manifolds 3.3 Normal Forms 3.4 Codimension One Bifurcations of Equilibria 3.5 Codimension One Bifurcations of Maps and Periodic Orbits CHAPTER 4 Averaging and Perturbation from a Geometric Viewpoint 4.1 Averaging and Poincare Maps 4.2 Examples of Averaging 4.3 Averaging and Local Bifurcations 4.4 Averaging, Hamikonian Systems, and Global Behavior: Cautionary Notes 4.5 Melnikov's Method: Perturbations of Planar Homoclinic Orbits 4.6 Melnikov's Method: Perturbations of Hamiltonian Systems and Subharmonic Orbits 4.7 Stability or Subharmonic Orbits 4.8 Two Degree of Freedom Hamiltonians and Area Preserving Maps of the Plane CHAPTER 5 Hyperbolic Sets, Symbolic Dynamics, and Strange Attractors 5.0 Introduction 5.1 The Smale Horseshoe: An Example of a Hyperbolic Limit Set 5.2 Invariant Sets and Hyperbolicity 5.3 Markov Partitions and Symbolic Dynamics 5.4 Strange Auractors and the Stability Dogma 5.5 Structurally Stable Attractors 5.6 One-Dimensional Evidence for Strange Attractors 5.7 The Geometric Lorenz Attractor 5.8 Statistical Properties: Dimension, Entropy, and Liapunov Exponents CHAPTER 6 Global Bifurcations 6.1 Saddle Connections

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网