您好,欢迎来到聚文网。 登录 免费注册
代数曲线拓扑学(英文版)

代数曲线拓扑学(英文版)

  • 字数: 499
  • 出版社: 世界图书出版公司
  • 作者: (土)A.杰格佳廖夫
  • 商品条码: 9787519214739
  • 版次: 1
  • 开本: 16开
  • 页数: 393
  • 出版年份: 2016
  • 印次: 1
定价:¥99 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
《代数曲线拓扑学》作者A.杰格佳廖夫,是代数 领域的知名学者,该书适用于复杂拓扑理论和代数簇 领域的研究生和数学工作者。
作者简介
。。。
目录
Preface Ⅰ Skeletons and dessins 1 Graphs 1.1 Graphs and trees 1.1.1 Graphs 1.1.2 Trees 1.1.3 Dynkin diagrams 1.2 Skeletons 1.2.1 Ribbon graphs 1.2.2 Regions 1.2.3 The fundamental group 1.2.4 First applications 1.3 Pseudo-trees 1.3.1 Admissible trees 1.3.2 The counts 1.3.3 The associated lattice 2 The groups г and в3 2.1 The modular group г := PSL(2, Z) 2.1.1 The presentation of г 2.1.2 Subgroups 2.2 The braid group в3 2.2.1 Artin's braid groups вn 2.2.2 The Burau representation 2.2.3 The group в3 3 Trigonai curves and elliptic surfaces 3.1 Trigonal curves 3.1.1 Basic definitions and properties 3.1.2 Singular fibers 3.1.3 Special geometric structures 3.2 Elliptic surfaces 3.2.1 The local theory 3.2.2 Compact elliptic surfaces 3.3 Real structures 3.3.1 Real varieties 3.3.2 Real trigonal curves and real elliptic surfaces 3.3.3 Lefschetz fibrations Dessins 4.1 Dessins 4.1.1 Trichotomic graphs 4.1.2 Deformations 4.2 Trigonal curves via dessins 4.2.1 The correspondence theorems 4.2.2 Complex curves 4.2.3 Generic real curves 4.3 First applications 4.3.1 Ribbon curves 4.3.2 Elliptic Lefschetz fibrations revisited 5 The braid monodromy 5.1 The Zariski-van Kampen theorem 5.1.1 The monodromy of a proper n-gonal curve 5.1.2 The fundamental groups 5.1.3 Improper curves: slopes 5.2 The case of trigonal curves 5.2.1 Monodromy via skeletons 5.2.2 Slopes 5.2.3 The strategy 5.3 Universal curves 5.3.1 Universal Curves 5.3.2 The irreducibility criteria Ⅱ Applications 6 The metabelian invariants 6.1 Dihedral quotients 6.1.1 Uniform dihedral quotients 6.1.2 Geometric implications 6.2 The Alexander module 6.2.1 Statements 6.2.2 Proof of Theorem 6.16: the case N ≥ 7 6.2.3 Congruence subgroups (the case N ≤ 5) 6.2.4 The parabolic case N = 6 A few simple computations 7.1 Trigonal curves in ∑2 7.1.1 Proper curves in ∑2 7.1.2 Perturbations of simple singularities 7.2 Sextics with a non-simple triple point 7.2.1 A gentle introduction to plane sextics 7.2.2 Classification and fundamental groups 7.2.3 A summary of further results 7.3 Plane quintics 8 Fundamental groups of plane sextics 8.1 Statements 8.1.1 Principal results 8.1.2 Beginning of the proof 8.2 A distinguished point of type E 8.2.1 A point of type E8 8.2.2 A point of type E7 8.2.3 A point of type E6 8.3 A distinguished point of type D 8.3.1 A point of type Dp, p ≥ 6 8.3.2 A point of type D5 8.3.3 A point of type D4 9 The transcendental lattice 9.1 Extremal elliptic surfaces without exceptional fibers 9.1.1 The tripod calculus 9.1.2 Proofs and further observations 9.2 Generalizations and examples 9.2.1 A computation via the homological invariant 9.2.2 An example 10 Monodromy factorizations 10.1 Hurwitz equivalence 10.1.1 Statement of the problem 10.1.2 En-valued factorizations 10.1.3 Sn-valued factorizations 10.2 Factorizations in Г 10.2.1 Exponential examples 10.2.2 2-factorizations 10.2.3 The transcendental lattice 10.2.4 2-factorizations via matrices 10.3 Geometric applications 10.3.1 Extremal elliptic surfaces 10.3.2 Ribbon curves via skeletons 10.3.3 Maximal Lefschetz fibrations are algebraic Appendices A An algebraic complement A.1 Integral lattices A.1.1 Nikulin's theory of discriminant forms A.I.2 Definite lattices A.2 Quotient groups A.2.1 Zariski quotients A.2.2 Auxiliary lemmas A.2.3 Alexander module and dihedral quotients B Bigonal curves in ∑d B. 1 Bigonal curves in ∑d B.2 Plane quartics, quintics, and sextics C Computer implementations C.1 GAP implementations C.I.1 Manipulating skeletons in GAP C.1.2 Proof of Theorem 6.16 D Definitions and notation D.1 Common notation D.I.1 Groups and group actions D.1.2 Topology and homotopy theory D.1.3 Algebraic geometry D.1.4 Miscellaneous notation D.2 Index of notation Bibliography Index of figures Index of tables Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网