您好,欢迎来到聚文网。 登录 免费注册
数域的上同调(第2版)(英文版)

数域的上同调(第2版)(英文版)

  • 字数: 672
  • 出版社: 世界图书出版公司
  • 作者: (德)J.诺伊基希//A.施密特//K.温伯格
  • 商品条码: 9787519219673
  • 版次: 1
  • 开本: 24开
  • 页数: 826
  • 出版年份: 2017
  • 印次: 1
定价:¥115 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
J.诺伊基希、A.施密特、K.温伯格著的《数域的 上同调(第2版)(英文版)》是一部教科书,适用于数 论专业的学生和数学工作者。书中第1部分提供了代 数的基础理论,包括射有限群的上同调,对偶群,自 由积,以及模的同调理论。第2部分详述了局部域和 全局域的伽罗瓦群,包括Tate二重性,局部域绝对伽 罗瓦群的结构,限制分歧,Poitou-Tate二重性, Hasse原理,Grunwald-Wang定理,Leopoldt猜想, 黎曼存在性定理,等等。本书是2008年版本的修订版 。
目录
Algebraic Theory Chapter Ⅰ:Cohomology of Profinite Groups 1.Profinite Spaces and Profinite Groups 2.Defirution of the Cohomology Groups 3.The Exact Cohomology Sequence 4.The Cup—Product 5.Change of the Group G 6.Basic Properties 7.Cohomology of Cyclic Groups 8.Cohomological Triviality 9.Tate Cohomology of Profinite Groups Chapter Ⅱ:Some Homological Algebra 1.Spectral Sequences 2.Filtered Cochain Complexes 3.Degeneration of Spectral Sequences 4.The Hochschild—Serre Spectral Sequence 5.The Tate Spectral Sequence 6.Derived Functors 7.Continuous Cochain Cohomology Chapter Ⅲ:Duality Properties of Profinite Groups 1.Duality for Class Formations 2.An Alternative Description of the Reciprocity Homomorphism 3.Cohomological Dimension 4.Dualizing Modules 5.Ptojective pro—c—groups 6.Profinite Groups of scd G=2 7.Poincare Groups 8.Filtrations 9.Generators and Relations Chapter Ⅳ:Free Products of Profinite Groups 1.Free Products 2.Subgroups of Free Products 3.Generalized Free Products Chapter Ⅴ:Iwasawa Modules 1.Modules up to Pseudo—Isomorphism 2.Complete Group Rings 3.Iwasawa Modules 4.Homotopy of Modules 5.Homotopy Invariants of Iwasawa Modules 6.Differential Modules and Presentations Arithmetic Theory Chapter Ⅵ:Galois Cohomology 1.Cohomology of the Additive Group 2.Hilbert's Satz 90 3.The Brauer Group 4.The Milnor K—Groups 5.Dimension of Fields Chapter Ⅶ:Cohomology of Local Fields 1.Cohomology of the Multiplicative Group 2.The Local Duality Theorem 3.The Local Euler—Poincare Characteristic 4.Galois Module Structure of the Multiplicative Group 5.Explicit Determination of Local Galois Groups Chapter Ⅷ:Cohomology of Global Fields 1.Cohomology of the Idele Class Group 2.The Connected Component of Ck 3.Restricted Ramification 4.The Global Duality Theorem 5.Local Cohomology of Global Galois Modules 6.Poitou—Tate Duality 7.The Global Euler—Poincare Characteristic 8.Duality for Unramified and Tamely Ramified Extensions Chapter Ⅸ:The Absolute Galois Group of a Global Field 1.The Hasse Principle 2.The Theorem of Grunwald—Wang 3.Construction of Cohomology Classes 4.Local Galois Groups in a Global Group 5.Solvable Groups as Galois Groups 6.Safarevic's Theorem Chapter Ⅹ:Restricted Ranufication 1.The Function Field Case 2.First Observations on the Number Field Case 3.Leopoldt's Conjecture 4.Cohomology of Large Number Fields 5.Riemann's Existence Theorem 6.The Relation between 2 and ∞ 7.Dimension of Hi(GTS,Z/pZ) 8.The Theorem of Kuz'min 9.Free Product Decomposition of Gs(P) 10.Class Field Towers 11.The Profinite Group Gs Chapter Ⅺ:Iwasawa Theory of Number Fields 1.The Maximal Abelian Unramified p—Extension of k∞ 2.Iwasawa Theory for p—adic Local Fields 3.The Maximal Abelianp—Extension of k∞ Unramified Outside S 4.Iwasawa Theory for Totally Real Fields and CM—Fields 5.Positively Ramified Extensions 6.The Main Conjecture Chapter Ⅻ:Anabelian Geometry 1.Subgroups of Gk 2.The Neukirch—Uchida Theorem 3.Anabelian Conjectures Literature Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网