您好,欢迎来到聚文网。 登录 免费注册
几何三部曲(第2卷几何的代数方法)(英文版)

几何三部曲(第2卷几何的代数方法)(英文版)

  • 字数: 355
  • 出版社: 世界图书出版公司
  • 作者: (比)F.博斯克斯
  • 商品条码: 9787519220754
  • 版次: 1
  • 开本: 24开
  • 页数: 430
  • 出版年份: 2017
  • 印次: 1
定价:¥65 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
复投影平面中代数曲线的研究是几何应用如密码 技术研究的重要内容,也是线性几何研究向代数几何 研究的自然过渡。F.博斯克斯著的《几何三部曲(第2 卷几何的代数方法)(英文版)》论述的就是几何空间 中的各种不同代数方法,给出了解析几何、仿射几何 、欧几里得几何和投影几何研究的具体内容,并详尽 地描述了各类几何空间和代数曲线的性质。本书适合 从事数学史、几何学、代数及其相关领域研究生和科 研人员阅读和参考。
目录
1 The Birth of Analytic Geometry 1.1 Fermat's Analytic Geometry 1.2 Descartes' Analytic Geometry 1.3 More on Cartesian Systems of Coordinates 1.4 Non—Cartesian Systems of Coordinates 1.5 Computing Distances and Angles 1.6 Planes and Lines in Solid Geometry 1.7 The Cross Product 1.8 Forgetting the Origin 1.9 The Tangent to a Curve 1.10 The Conics 1.11 The Ellipse 1.12 The Hyperbola 1.13 The Parabola 1.14 The Quadrics 1.15 The Ruled Quadrics 1.16 Problems 1.17 Exercises 2 Affine Geometry 2.1 Affine Spaces over a Field 2.2 Examples of Affine Spaces 2.3 Affine Subspaces 2.4 Parallel Subspaces 2.5 Generated Subspaces 2.6 Supplementary Subspaces 2.7 Lines and Planes 2.8 Barycenters 2.9 Barycentric Coordinates 2.10 Triangles 2.11 Parallelograms 2.12 Affine Transformations 2.13 Affine Isomorphisms 2.14 Translations 2.15 Projections 2.16 Symmetries 2.17 Homotheties and Affinities 2.18 The Intercept Thales Theorem 2.19 Affine Coordinates 2.20 Change of Coordinates 2.21 The Equations of a Subspace 2.22 The Matrix of an Affine Transformation 2.23 The Quadrics 2.24 The Reduced Equation of a Quadric 2.25 The Symmetries of a Quadric 2.26 The Equation of a Non—degenerate Quadric 2.27 Problems 2.28 Exercises 3 More on Real Affine Spaces 3.1 About Left,Right and Between 3.2 Orientation of a Real Affine Space 3.3 Direct and Inverse Affine Isomorphisms 3.4 Parallelepipeds and Half Spaces 3.5 Pasch's Theorem 3.6 Affine Classification of Real Quadrics 3.7 Problems 3.8 Exercises 4 Euclidean Geometry 4.1 Metric Geometry 4.2 Defining Lengths and Angles 4.3 Metric Properties of Euclidean Spaces 4.4 Rectangles, Diamonds and Squares 4.5 Examples of Euclidean Spaces 4.6 Orthonormal Bases 4.7 Polar Coordinates 4.8 Orthogonal Projections 4.9 Some Approximation Problems 4.10 Isometries 4.11 Classification of Isometries 4.12 Rotations 4.13 Similarities 4.14 Euclidean Quadrics 4.15 Problems 4.16 Exercises 5 Hermitian Spaces 5.1 Hermitian Products 5.2 Orthonormal Bases 5.3 The Metric Structure of Hermitian Spaces 5.4 Complex Quadrics 5.5 Problems 5.6 Exercises 6 Projective Geometry 6.1 Projective Spaces over a Field 6.2 Projective Subspaces 6.3 The Duality Principle 6.4 Homogeneous Coordinates 6.5 Projective Basis 6.6 The Anharmonic Ratio 6.7 Projective Transformations 6.8 Desargues' Theorem 6.9 Pappus' Theorem 6.10 Fano's Theorem 6.11 Harmonic Quadruples 6.12 The Axioms of Projective Geometry 6.13 Projective Quadrics 6.14 Duality with Respect to a Quadric 6.15 Poles and Polar Hyperplanes 6.16 Tangent Space to a Quadric 6.17 Projective Conics 6.18 The Anharmonic Ratio Along a Conic 6.19 The Pascal and Brianchon Theorems 6.20 Affine Versus Projective 6.21 Real Quadrics 6.22 The Topology of Projective Real Spaces 6.23 Problems 6.24 Exercises 7 Algebraic Curves 7.1 Looking for the Right Context 7.2 The Equation of an Algebraic Curve 7.3 The Degree of a Curve 7.4 Tangents and Multiple Points 7.5 Examples of Singularities 7.6 Inflexion Points 7.7 The Bezout Theorem 7.8 Curves Through Points 7.9 The Number of Multiplicities 7.10 Conics 7.11 Cubics and the Cramer Paradox 7.12 Inflexion Points of a Cubic 7.13 The Group of a Cubic 7.14 Rational Curves 7.15 A Criterion of Rationality 7.16 Problems 7.17 Exercises Appendix A Polynomials over a Field A.1 Polynomials Versus Polynomial Functions A.2 Euclidean Division A.3 The Bezout Theorem A.4 Irreducible Polynomials A.5 The Greatest Common Divisor A.6 Roots of a Polynomial A.7 Adding Roots to a Polynomial A.8 The Derivative of a Polynomial Appendix B Polynomialsin Several Variables B.1 Roots B.2 Polynomial Domains B.3 Quotient Field B.4 Irreducible Polynomials B.5 Partial Derivatives Appendix C Homogeneous Polynomials C.1 Basic Properties C.2 Homogeneous Versus Non—homogeneous Appendix D Resultants D.1 The Resultant of two Polynomials D.2 Roots Versus Divisibility D.3 The Resultant of Homogeneous Polynomials Appendix E Symmetric Polynomials E.1 Elementary Symmetric Polynomials E.2 The Structural Theorem Appendix F Complex Numbers F.1 The Field of Complex Numbers F.2 Modulus, Argument and Exponential F.3 The Fundamental Theorem of Algebra F.4 More on Complex and Real Polynomials Appendix G Quadratic Forms G.1 Quadratic Forms over a Field G.2 Conjugation and Isotropy G.3 Real Quadratic Forms G.4 Quadratic Forms on Euclidean Spaces G.5 On Complex Quadratic Forms Appendix H Dual Spaces H.1 The Dual of a Vector Space H.2 Mixed Orthogonality References and Further Reading Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网