您好,欢迎来到聚文网。 登录 免费注册
统计决策理论中的渐近方法(英文版)

统计决策理论中的渐近方法(英文版)

  • 字数: 605
  • 出版社: 世界图书出版公司
  • 作者: (美)L.勒卡姆
  • 商品条码: 9787519220792
  • 版次: 1
  • 开本: 24开
  • 页数: 742
  • 出版年份: 2017
  • 印次: 1
定价:¥115 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
《统计决策理论中的渐近方法(英文版)》作者L. 勒卡姆是统计决策理论的主要贡献者,《统计决策理 论中的渐进方法》以作者在芝加哥大学多年授课讲义 为基础,以易于理解的方式,从逼近复合统计实验概 念中推衍出渐进统计理论。书中数学推理严密而且有 一定深度,高等问题有较为详细论述。
目录
Acknowledgments To the Reader l General Introduction 2 Summary of Contents and Historical Notes CHAPTER l Experiments--Decision Spaces 1 Introduction 2 Vector Lattices--L-Spaces--Transitions 3 Experiments--Decision Procedures 4 A Basic Density Theorem 5 Building Experiments from Other Ones 6 Representations--Markov Kernels CHAPTER 2 Some Results from Decision Theory: Deficiencies 1 Introduction 2 Characterization of the Spaces of Risk Functions: Minimax Theorem 3 Deficiencies; Distances 4 The Form of Bayes Risks--Choquet Lattices CHAPTER 3 Likelihood Ratios and Conical Measures 1 Introduction 2 Homogeneous Functions of Measures 3 Deficiencies for Binary Experiments: Isometries 4 Weak Convergence of Experiments 5 Boundedly Complete Experiments 6 Convolutions: Hellinger Transforms 7 The Blackwell-Sherman-Stein Theorem CHAPTER 4 Some Basic Inequalities 1 Introduction 2 Hellinger Distances: L1-Norm 3 Approximation Properties for Likelihood Ratios 4 Inequalities for Conditional Distributions CHAPTER 5 Sufficiency and Insufficiency 1 Introduction 2 Projections and Conditional Expectations 3 Equivalent Definitions for Sufficiency 4 Insufficiency 5 Estimating Conditional Distributions CHAPTER 6 Domination, Compactness, Contiguity 1 Introduction 2 Definitions and Elementary Relations 3 Contiguity 4 Strong Compactness and a Result of D. Lindae CHAPTER 7 Some Limit Theorems 1 Introduction 2 Convergence in Distribution or in Probability 3 Distinguished Sequences of Statistics 4 Lower-Semicontinuity for Spaces of Risk Functions 5 A Result on Asymptotic Admissibility CHAPTER 8 Invariance Properties 1 Introduction 2 The Markov-Kakutani Fixed Point Theorem 3 A Lifting Theorem and Some Applications 4 Automatic Invariance of Limits 5 Invariant Exponential Families 6 The Hunt-Stein Theorem and Related Results CHAPTER 9 Infinitely Divisible, Gaussian, and Poisson Experiments 1 Introduction 2 Infinite Divisibility 3 Gaussian Experiments 4 Poisson Experiments 5 A Central Limit Theorem CHAPTER 10 Asymptotically Gaussian Experiments: Local Theory 1 Introduction 2 Convergence to a Gaussian Shift Experiment 3 A Framework which Arises in Many Applications 4 Weak Convergence of Distributions 5 An Application of a Martingale Limit Theorem 6 Asymptotic Admissibility and Minimaxity CHAPTER 11 Asymptotic Normality--Global 1 Introduction 2 Preliminary Explanations 3 Construction of Centering Variables 4 Definitions Relative to Quadratic Approximations 5 Asymptotic Properties of the Centerings Z 6 The Asymptotically Gaussian Case 7 Some Particular Cases 8 Reduction to the Gaussian Case by Small Distortions 9 The Standard Tests and Confidence Sets 10 Minimum X2 and Relatives CHAPTER 12 Posterior Distributions and Bayes Solutions 1 Introduction 2 Inequalities on Conditional Distributions 3 Asymptotic Behavior of Bayes Procedures 4 Approximately Gaussian Posterior Distributions CHAPTER 13 An Approximation Theorem for Certain Sequential Experiments 1 Introduction 2 Notations and Assumptions 3 Basic Auxiliary Lemmas 4 Reduction Theorems 5 Remarks on Possible Applications CHAPTER 14 Approximation by Exponential Families 1 Introduction 2 A Lemma on Approximate Sufficiency 3 Homogeneous Experiments of Finite Rank 4 Approximation by Experiments of Finite Rank 5 Construction of Distinguished Sequences of Estimates CHAPTER 15 Sums of Independent Random Variables 1 Introduction 2 Concentration Inequalities 3 Compactness and Shift-Compactness 4 Poisson Exponentials and Approximation Theorems 5 Limit Theorems and Related Results 6 Sums of Independent Stochastic Processes CHAPTER 16 Independent Observations 1 Introduction 2 Limiting Distributions for Likelihood Ratios 3 Conditions for Asymptotic Normality 4 Tests and Distances 5 Estimates for Finite Dimensional Parameter Spaces 6 The Risk of Formal Bayes Procedures 7 Empirical Measures and Cumulatives 8 Empirical Measures on Vapnik-Cervonenkis Classes CHAPTER 17 Independent Identically Distributcd Observations 1 Introduction 2 Hilbert Spaces Around a Point 3 A Special Role for □: Differentiability in Quadratic Mean 4 Asymptotic Normality for Rates Other than □ 5 Existence of Consistent Estimates 6 Estimates Converging at the □-Rate 7 The Behavior of Posterior Distributions 8 Maximum Likelihood 9 Some Cases where the Number of Observations Is Random Appendix: Results from Classical Analysis 1 The Language of Set Theory 2 Topological Spaces 3 Uniform Spaces 4 Metric Spaces 5 Spaces of Functions 6 Vector Spaces 7 Vector Lattices 8 Vector Lattices Arising from Experiments 9 Lattices of Numerical Functions 10 Extensions of Positive Linear Functions 11 Smooth Linear Functionals 12 Derivatives and Tangents Bibliography Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网