您好,欢迎来到聚文网。 登录 免费注册
偏微分方程(第2版)(英文版)

偏微分方程(第2版)(英文版)

  • 字数: 262
  • 出版社: 世界图书出版公司
  • 作者: (德)约斯特|责编:刘慧//高蓉
  • 商品条码: 9787510032967
  • 版次: 1
  • 开本: 24开
  • 页数: 356
  • 出版年份: 2011
  • 印次: 3
定价:¥69 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
由约斯特编著的《偏微 分方程(第2版)(英文版)》是 一部讲述偏微分方程理论的 入门书籍。全书以椭圆偏微 分为核心,系统讲述了相关 内容,涉及到不少非线性问 题,如,最大值原理方法, 抛物方程和变分法。书中讲 述了椭圆方程解的估计的主 要方法,sobolev空间理论 ,弱解和强解,schauder估 计,moser迭代。展示了椭 圆,抛物和双曲解以及布朗 运动,半群之间的关系。
目录
Introduction: What Are Partial Differential Equations? 1.The Laplace Equation as the Prototype of an Elliptic Partial Differential Equation of Second Order 1.1 Harmonic functions. Representation Formula for the Solution of the Dirichlet Problem on the Ball (Existence Techniques 0) 1.2 Mean Value Properties of Harmonic Functions. Subharmonic Functions. The Maximum Principle 2.The Maximum Principle 2.1 The Maximum Principle of E.Hopf 2.2 The Maximum Principle of Alexandrov and Bakelman 2.3 Maximum Principles for Nonlinear Differential Equations 3.Existence Techniques Ⅰ: Methods Based on the Maximum Principle 3.1 Difference Methods: Discretization of Differential Equations 3.2 The Perron Method 3.3 The Alternating Method of H.A.Schwarz 3.4 Boundary Regularity 4.Existence Techniques Ⅱ: Parabolic Methods. The Heat Equation 4.1 The Heat Equation: efinition and Maximum Principles 4.2 The Fundamental Solution of the Heat Equation. The Heat Equation and the Laplace Equation 4.3 The Initial Boundary Value Problem for the Heat Equation 4.4 Discrete Methods 5.Reaction-Diffusion Equations and Systems 5.1 Reaction-Diffusion Equations 5.2 Reaction-Diffusion Systems 5.3 The Turing Mechanism 6.The Wave Equation and its Connections with the Laplace and Heat Equations 6.1 The One-Dimensional Wave Equation 6.2 The Mean Value Method: Solving the Wave Equation Through the Darboux Equation 6.3 The Energy Inequality and the Relation with the Heat Equation 7.The Heat Equation, Semigroups, and Brownian Motion 7.1 Semigroups 7.2 Infinitesimal Generators of Semigroups 7.3 Brownian Motion 8.The Dirichlet Principle. Variational Methods for the Solution of PDEs (Existence Techniques Ⅲ) 8.1 Dirichlet's Principle 8.2 The Sobolev Space W1,2 8.3 Weak Solutions of the Poisson Equation 8.4 Quadratic Variational Problems 8.5 Abstract Hilbert Space Formulation of the Variational Problem. The Finite Element Method 8.6 Convex Variational Problems 9.Sobolev Spaces and L2 Regularity Theory 9.1 General Sobolev Spaces. Embedding Theorems of Sobolev, Morrey, and John-nirenberg 9.2 L2-Regularity Theory: Interior Regularity of Weak Solutions of the Poisson Equation 9.3 Boundary Regularity and Regularity Results for Solutions of General Linear Elliptic Equations 9.4 Extensions of Sobolev Functions and Natural Boundary Conditions 9.5 Eigenvalues of Elliptic Operators 10.Strong Solutions 10.1 The Regularity Theory for Strong Solutions 10.2 A Survey of the Lp-Regularity Theory and Applications to Solutions of Semilinear Elliptic Equations 11.The Regularity Theory of Schauder and the Continuity Method (Existence Techniques Ⅳ) 11.1 Cα-Regularity Theory for the Poisson Equation 11.2 The Schauder Estimates 11.3 Existence Techniques Ⅳ: The Continuity Method

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网