您好,欢迎来到聚文网。 登录 免费注册
有限元方法--流体力学(第7版)(英文版)

有限元方法--流体力学(第7版)(英文版)

  • 字数: 682
  • 出版社: 世界图书出版公司
  • 作者: (英)辛克维奇
  • 商品条码: 9787510098512
  • 版次: 1
  • 开本: 16开
  • 页数: 544
  • 出版年份: 2015
  • 印次: 1
定价:¥125 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
辛克维奇著的《有限元方法--流体力学》综述了 有限元方法在流体力学中的应用。在介绍对流稳定程 序、稳态及瞬态方程以及流体力学方程的数值解之前 ,先对所有相关的偏微分方程作了一个有益的概述。 该书对基本特征有限元分裂(CBS)方法作了详细的 介绍和讨论,随后深入地介绍了不可压缩和可压缩流 体力学、多孔介质流动力学、浅水流动力学以及长、 短波的数值解。
目录
List of Figures List of Tables Preface CHAPTER 1 Introduction to the Equations of Fluid Dynamics and the Finite Element Approximation 1.1 General remarks and classification of fluid dynamics problems discussed in this book 1.2 The governing equations of fluid dynamics 1.2.1 Velocity, strain rates, and stresses in fluids 1.2.2 Constitutive relations for fluids 1.2.3 Mass conservation 1.2.4 Momentum conservation: Dynamic equilibrium 1.2.5 Energy conservation and equation of state 1.2.6 Boundary conditions 1.2.7 Navier-Stokes and Euler equations 1.3 Inviscid, incompressible flow 1.3.1 Velocity potential solution 1.4 Incompressible (or nearly incompressible) flows 1.5 Numerical solutions: Weak forms, weighted residual, and finite element approximation 1.5.1 Strong and weak forms 1.5.2 Weighted residual approximation 1.5.3 The Galerkin finite element method 1.5.4 A finite volume approximation 1.6 Concluding remarks References CHAPTER 2 Convection-Dominated Problems: Finite Element Approximations to the Convection-Diffusion- Reaction Equation 2.1 Introduction 2.2 The steady-state problem in one dimension 2.2.1 General remarks 2.2.2 Petrov-Galerkin methods for upwinding in one dimension 2.2.3 Balancing diffusion in one dimension 2.2.4 A variational principle in one dimension 2.2.5 Galerkin least-squares approximation (GLS) in one dimension 2.2.6 Subgrid scale (SGS) approximation 2.2.7 The finite increment calculus (FIC) for stabilizing the convective-diffusion equation in one dimension 2.2.8 Higher-order approximations 2.3 The steady-state problem in two (or three) dimensions 2.3.1 General remarks 2.3.2 Streamline (upwind) Petrov-Galerkin weighting (SUPG) 2.3.3 Galerkin least squares (GLS) and finite increment calculus (FIC) in multidimensional problems 2.4 Steady state: Concluding remarks 9.5 Transients: Introductory remarks 2.5.1 Mathematical background 2.5.2 Possible discretization procedures 2.6 Characteristic-based methods 2.6.1 Mesh updating and interpolation methods 2.6.2 Characteristic-Galerkin procedures 2.6.3 A simple explicit characteristic-Galerkin procedure. 2.6.4 Boundary conditions: Radiation 2.7 Taylor-Galerkin procedures for scalar variables 2.8 Steady-state condition 2.9 Nonlinear waves and shocks 2.10 Treatment of pure convection 2.11 Boundary conditions for convection-diffusion 2.12 Summary and concluding remarks References CHAPTER 3 The Characteristic-Based Split (CBS) Algorithm:A General Procedure for Compressible and Incompressible Flow 3.1 Introduction 3.2 Nondimensional form of the governing equations 3.3 Characteristic-based split (CBS) algorithm 3.3.1 The split: General remarks 3.3.2 The split: Temporal discretization 3.3.3 Spatial discretization and solution procedure 3.3.4 Mass diagonalization (lumping) 3.4 Explicit, semi-implicit, and nearly implicit forms 3.4.1 Fully explicit form CHAPTER 4 Incompressible Newtonian Laminar Flows. CHAPTER 5 Incompressible Non-Newtonian Flows CHAPTER 6 Free Surface and Buoyancy Driven Flows. CHAPTER 7 Compressible High-Speed Gas Flow. CHAPTER 8 Turbulent Flows. CHAPTER 9 Generalized Flow and Heat Transfer in Porous Media CHAPTER 10 Shallow-Water Problems. CHAPTER 11 Long and Medium Waves. CHAPTER 12 Short Waves CHAPTER 13 Fluid-Structure Interaction CHAPTER 14 Biofluid Dynamics. CHAPTER 15 Computer Implementation of the CBS Algorithm APPENDIX A Self-Adjoint Differential Equations APPENDIX B Nonconservative Form of Navier-Stokes Equations APPENDIX C Computing the Drag Force and Stream Function. APPENDIX D Convection-Diffusion Equations: Vector-Valued Variables APPENDIX E Integration Formulae APPENDIX F Edge-Based Finite Element Formulation APPENDIX G Boundary Layer-lnviscid Flow Coupling APPENDIX H Multigrid Method APPENDIX I Mass-Weighted Averaged Turbulence Transport Equations Author Index Subject Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网