您好,欢迎来到聚文网。 登录 免费注册
丢番图几何基础(英文版)

丢番图几何基础(英文版)

  • 字数: 317
  • 出版社: 世界图书出版公司
  • 作者: (美)朗
  • 商品条码: 9787519200237
  • 版次: 1
  • 开本: 24开
  • 页数: 370
  • 出版年份: 2016
  • 印次: 1
定价:¥66 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
朗著的这本《丢番图几何基础(英文版)》主要 从代数几何进行考虑。书中涵盖了一些研究该课题的 基础方法,如高度理论,Neron函数及其在一些经典 定理中的应用,如Mordell-Weil定理、关于积分点的 西格尔定理、希尔伯特的不可约定理、Roth定理及其 他。取代了Diophantine Geometry,涵盖了许多重 要的新资料,如Neron函数理论及Tate和Silverman 的新研究结果。 本书凝聚了作者多年科研和教学成果,适用于科 研工作者、高校教师和研究生。
目录
Acknowledgment Some Standard Notation CHAPTER 1 Absolute Values 1.Definitions, dependence and independence 2.Completions 3.Unramified extensions 4.Finite extensions CHAPTER 2 Proper Sets of Absolute Values. Divisors and Units 1.Proper sets of absolute values 2.Number fields 3.Divisors on varieties 4.Divisors on schemes 5.Mr-divisors and divisor classes 6.Ideal classes and units in number fields 7.Relative units and divisor classes 8.The Chevalley-Weil theorem CHAPTER 3 Heights 1.Definitions 2.Gauss' lemma 3.Heights in function fields 4.Heights on abelian groups 5.Counting points of bounded height CHAPTER 4 Geometric Properties of Heights 1.Functorial properties 2.Heights and linear systems 3.Ample linear systems 4.Projections on curves 5.Heights associated with divisor classes CHAPTER 5 Heights on Abelian Varieties 1.Some linear and quasi-linear algebra 2.Quadraticity ofendomorphisms on divisor classes 3.Quadraticity of the height 4.Heights and Poincare divisors 5.Jacobian varieties and curves 6.Definiteness properties Over number fields 7.Non-degenerate heights and Euclidean spaces 8.Mumford's theorem CHAPTER 6 The Mordell-Weil Theorem 1.Kummer theory 2.The weak Mordell-Weil theorem 3.The infinite descent 4.Reduction steps 5.Points of bounded height 6.Theorem of the base CHAPTER 7 The Thue-Siegel-Roth Theorem 1.Statement of the theorem 2.Reduction to simultaneous approximations 3.Basic steps of the proof 4.A combinatorial lemma 5.Proof of Proposition 3.1 6.Wronskians 7.Factorization of a polynomial 8.The index 9.Proof of Proposition 3.2 10.A geometric formulation of Roth's theorem CHAPTER 8 Siegel's Theorem and Integral Points 1.Height of integral points 2.Finiteness theorems 3.The curve ax + by = 1 4.The Thue-Siegel curve 5.Curves of genus 0 6.Torsion points on curves 7.Division points on curves 8.Non-abelian Kummer theory CHAPTER 9 Hilbert's Irreducibility Theorem 1.Irreducibility and integral points 2.Irreducibility Over the rational numbers 3.Reduction steps 4.Function fields 5.Abstract definition of Hilbert sets 6.Applications to commutative group varieties CHAPTER 10 Well Functions and Neron Divisors I.Bounded sets and functions 2.Neron divisors and Well functions 3.Positive divisors 4.The associated height function CHAPTER 11 Neron Functions on Abelian Varieties i.Existence of Neron functions 2.Translation properties of Neron functions 3.Neron functions on varieties 4.Reciprocity laws 5.Neron functions as intersection multiplicities 6.The Neron symbol and group extensions CHAPTER 12 Algebraic Families of Neron Functions 1.Variation of Neron functions in an algebraic family 2.Silverman's height and specialization theorems 3.Neron heights as intersection multiplicities 4.Fibral divisors 5.The height determined by a section : Tate's theorem CHAPTER 13 Neron Functions Over the Complex Numbers 1.The Neron function of an abelian variety 2.The scalar product of differentials of first kind 3.The canonical 2-form and the Riemann theta function 4.The divisor of the Riemann theta function 5.Green, Neron, and theta functions 6.The law of interchange of argument and parameter 7.Differentials of third kind and Green's function Appendix Review of S.Lang's Diophantine Geometry, by L.J.Mordell Review of L.J.Mordell's Diophantine Equations, by S.Lang Bibliography Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网