您好,欢迎来到聚文网。 登录 免费注册
概率论(第2版)(英文版)

概率论(第2版)(英文版)

  • 字数: 663
  • 出版社: 世界图书出版公司
  • 作者: (美)斯特鲁克
  • 商品条码: 9787519205348
  • 版次: 1
  • 开本: 16开
  • 页数: 528
  • 出版年份: 2016
  • 印次: 1
定价:¥119 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
斯特鲁克著的这本《概率论(第2版)(英文版 )》通过重点介绍现代概率论的分析思路与其所用的 分析工具之间的相辅相成的关系,相当详细地介绍了 现代概率论。 本书凝聚了作者多年科研和教学成果,适用于科 研工作者、高校教师和研究生。
目录
Preface Table of Dependence Chapter 1 Sums of Independent Random Variables 1.1 Independence 1.1.1.Independent σ—Algebras 1.1.2.Independent Functions 1.1.3.The Rademacher Functions Exercises for 1.1 1.2 The Weak Law of Large Numbers 1.2.1.Orthogonal Random Variables 1.2.2.Independent Random Variables 1.2.3.Approximate Identities Exercises for 1.2 1.3 Cramer's Theory of Large Deviations Exercises for 1.3 1.4 The Strong Law of Large Numbers Exercises for 1.4 1.5 Law of the Iterated Logarithm Exercises for 1.5 Chapter 2 The Central Limit Theorem 2.1 The Basic Central Limit Theorem 2.1.1.Lindeberg's Theorem 2.1.2.The Central Limit Theorem Exercisesfor 2.1 2.2 The Berry—Esseen Theorem via Stein's Method 2.2.1.L1—Berry—Esseen 2.2.2.The Classical Berry—Esseen Theorem Exercises for 2.2 2.3 Some Extensions of The Central Limit Theorem 2.3.1.The Fourier Transform 2.3.2.Multidimensional Central Limit Theorem 2.3.3.Higher Moments Exercises for 2.3 2.4 An Application to Hermite Multipliers 2.4.1.Hermite Multipliers 2.4.2.Beckner's Theorem 2.4.3.Applications of Beckner's Theorem Exercises for 2.4 Chapter 3 Infinitely Divisible Laws 3.1 Convergence of Measures on RN 3.1.1.Sequential Compactnessin M1(RN) 3.1.2.Levy's Continuity Theorem Exercises for 3.1 3.2 The Levy—Khinchine Formula 3.2.1.T(RN) Is the Closure of P(RN) 3.2.2.The Formula Exercises for 3.2 3.3 Stable Laws 3.3.1.General Results 3.3.2.α—Stable Laws Exercises for 3.3 Chapter 4 Levy Processes 4.1 Stochastic Processes, Some Generalities 4.1.1.The Space D(RN) 4.1.2.Jump Functions Exercises for 4.1 4.2 Discontinuous Levy Processes 4.2.1.The Simple Poisson Process 4.2.2.Compound Poisson Processes 4.2.3.Poisson Jump Processes 4.2.4.Levy Processes with Bounded Variation 4.2.5.General, Non—Gaussian Levy Processes Exercises for 4.2 4.3 Brownian Motion, the Gaussian Levy Process 4.3.1.Deconstructing Brownian Motion 4.3.2.Levy's Construction of Brownian Motion 4.3.3.Levy's Constructionin Context 4.3.4.Brownian Paths Are Non—Differentiable 4.3.5.General Levy Processes Exercises for 4.3 Chapter 5 Conditioning and Martingales 5.1 Conditioning 5.1.1.Kolmogorov's Definition 5.1.2.Some Extensions Exercises for 5.1 5.2 Discrete Parameter Martingales 5.2.1.Doob's Inequality and Marcinkewitz's Theorem 5.2.2.Doob's Stopping Time Theorem 5.2.3.Martingale Convergence Theorem 5.2.4.Reversed Martingales and De Finetti's Theory 5.2.5.An Application to a Tracking Algorithm Exercises for 5.2 Chapter 6 Some Extensions and Applications of Martingale Theory 6.1 Some Extensions 6.1.1.Martingale Theory for a σ—Finite Measure Space 6.1.2.Banach Space—Valued Martingales Exercises for 6.1 6.2 Elements of Ergodic Theory 6.2.1.The Maximal Ergodic Lemma 6.2.2.Birkhoff's Ergodic Theorem 6.2.3.Stationary Sequences 6.2.4.Continuous Parameter Ergodic Theory Exercises for 6.2 6.3 Burkholder's Inequality 6.3.1.Burkholder's Comparison Theorem 6.3.2.Burkholder'slnequality Exercises for 6.3 Chapter 7 Continuous Parameter Martingales 7.1 Continuous Parameter Martingales 7.1.1.Progressively Measurable Functions 7.1.2.Martingales: Definition and Examples 7.1.3.Basic Results 7.1.4.Stopping Times and Stopping Theorems 7.1.5.An Integration by Parts Formula Exercises for 7.1 7.2 Brownian Motion and Martingales 7.2.1.Levy's Characterization of Brownian Motion 7.2.2.Doob—Meyer Decomposition, an Easy Case 7.2.3.Burkholder's Inequality Again Exercises for 7.2 7.3 The Refiection Principle Revisited 7.3.1.Reflecting Symmetric Levy Processes 7.3.2.Reflected Brownian Motion Exercises for 7.3 Chapter 8 Gaussian Measures on a Banach Space 8.1 The Classical Wiener Space 8.1.1.Classical Wiener Measure 8.1.2.The Classical Cameron—Martin Space Exercisesfor 8.1 8.2 A Structure Theorem for Gaussian Measures 8.2.1.Fernique's Theorem 8.2.2.The Basic Structure Theorem 8.2.3.The Cameron—Marin Space Exercises for 8.2 8.3 From Hilbert to Abstract Wiener Space 8.3.1.An Isomorphism Theorem 8.3.2.Wiener Series 8.3.3.Orthogonal Projections 8.3.4.Pinned Brownian Motion 8.3.5.Orthogonal Invariance Exercises for 8.3 8.4 A Larger Deviations Result and Strassen's Theorem 8.4.1.Large Deviations for Abstract Wiener Space 8.4.2.Strassen's Law ofthelterated Logarithm Exercises for 8.4 8.5 Euclidean Free Fields 8.5.1.The Ornstein—Uhlenbeck Process 8.5.2.Ornstein—Uhlenbeck as an Abstract Wiener Space 8.5.3.Higher Dimensional Free Fields Exercises for 8.5 8.6 Brownian Motion on a Banach Space 8.6.1.Abstract Wiener Formulation 8.6.2.Brownian Formulation 8.6.3.Strassen's Theorem Revisited Exercises for 8.6 Chapter 9 Convergence of Measures on a Polish Space 9.1 Prohorov—Varadarajan Theory 9.1.1.Some Background 9.1.2.The Weak Topology 9.1.3.The Levy Metric and Completeness of M1(E) Exercises for 9.1 9.2 Regular Conditional Probability Distributions 9.2.1.Fibering a Measure 9.2.2.Representing Levy Measures via the Ito Map Exercises for 9.2 9.3 Donsker'slnvariance Principle 9.3.1.Donsker's Theorem 9.3.2.Rayleigh's Random Flights Model Exercise for 9.3 Chapter 10 Wiener Measure and Partial Differential Equations 10.1 Martingales and Partial Differential Equations 10.1.1. Localizing and Extending Martingale Representations 10.1.2. Minimum Principles 10.1.3. The Hermite Heat Equation 10.1.4. The Arcsine Law 10.1.5. Recurrence and Transience of Brownian Motion Exercises for 10.1 10.2 The Markov Property and Potential Theory 10.2.1. The Markov Property for Wiener Measure 10.2.2. Recurrence in One and Two Dimensions 10.2.3. The Dirichlet Problem Exercises for 10.2 10.3 Other Heat Kernels 10.3.1. A General Construction 10.3.2. The Dirichlet Heat Kernel 10.3.3. Feynman-Kac Heat Kernels 10.3.4. Ground States and Associated Measures on Pathspace 10.3.5. Producing Ground States Exercises for 10.3 Chapter 11 Some Classical Potential Theory 11.1 Uniqueness Refined 11.1.1. The Dirichlet Heat Kernel Again 11.1.2. Exiting Through Oreg G 11.1.3. Applications to Questions of Uniqueness 11.1.4. Harmonic Measure Exercises for 11.1 11.2 The Poisson Problem and Green Functions 11.2.1. Green Functions when N > 3 11.2.2. Green Functions when N E {1, 2} Exercises for 11.2 11.3 Excessive Functions, Potentials, and Riesz Decompositions 11.3.1. Excessive Functions 11.3.2. Potentials and Riesz Decomposition Exercises for 11.3 11.4 Capacity 11.4.1. The Capacitory Potential 11.4.2. The Capacitory Distribution 11.4.3. Wiener's Test 11.4.4. Some Asymptotic Expressions Involving Capacity Exercises for 11.4 Notation Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网