您好,欢迎来到聚文网。 登录 免费注册
黎曼几何和几何分析(第6版)(英文版)

黎曼几何和几何分析(第6版)(英文版)

  • 出版社: 世界图书出版公司
  • 作者: (德)约斯特
  • 商品条码: 9787510084447
  • 版次: 1
  • 开本: 24开
  • 页数: 611
  • 出版年份: 2015
  • 印次: 1
定价:¥99 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
约斯特所著的《黎曼几何和几何分析(第6版)(英 文版)》是一部值得一读的研究生教材,内容主要涉 及黎曼几何基本定理的研究,如霍奇定理、Rauch比 较定理、Lyusternik和Fet定理调和映射的存在性等 ,书中还有当代数学研究领域中的最热门论题,有些 内容则是首次出现在教科书中。
目录
1 Riemannian Manifolds 1.1 Manifolds and Differentiable Manifolds 1.2 Tangent Spaces 1.3 Submanifolds 1.4 Riemannian Metrics 1.5 Existence of Geodesics on Compact Manifolds 1.6 The Heat Flow and the Existence of Geodesics 1.7 Existence of Geodesics on Complete Manifolds Exercises for Chapter 1 2 Lie Groups and Vector Bundles 2.1 Vector Bundles 2.2 Integral Curves of Vector Fields.Lie Algebras 2.3 Lie Groups 2.4 Spin Structures Exercises for Chapter 2 3 The Laplace Operator and Harmonic Differential Forms 3.1 The Laplace Operator on Functions 3.2 The Spectrum of the Laplace Operator 3.3 The Laplace Operator on Forms 3.4 Representing Cohomology Classes by Harmonic Forms 3.5 Generalizations 3.6 The Heat Flow and Harmonic Forms Exercises for Chapter 3 4 Connections and Curvature 4.1 Connections in Vector Bundles 4.2 Metric Connections.The Yang—Mills Functional 4.3 The Levi—Civita Connection 4.4 Connections for Spin Structures and the Dirac Operator 4.5 The Bochner Method 4.6 Eigenvalue Estimates by the Method of Li—Yau 4.7 The Geometry of Submanifolds 4.8 Minimal Submanifolds Exercises for Chapter 4 5 Geodesics and Jacobi Fields 5.1 First and second Variation of Arc Length and Energy 5.2 Jacobi Fields 5.3 Conjugate Points and Distance Minimizing Geodesics 5.4 Riemannian Manifolds of Constant Curvature 5.5 The Rauch Comparison Theorems and Other Jacobi Field Estimates 5.6 Geometric Applications of Jacobi Field Estimates 5.7 Approximate Fundamental Solutions and Representation Formulas 5.8 The Geometry of Manifolds of Nonpositive Sectional Curvature Exercises for Chapter 5 A Short Survey on Curvature and Topology 6 Symmetric Spaces and Kahler Manifolds 6.1 Complex Projective Space 6.2 Kahler Manifolds 6.3 The Geometry of Symmetric Spaces 6.4 Some Results about the Structure of Symmetric Spaces 6.5 The Space Sl(n,IR)/SO(n,IR) 6.6 Symmetric Spaces of Noncompact Type Exercises for Chapter 6 7 Morse Theory and Floer Homology 7.1 Preliminaries: Aims of Morse Theory 7.2 The Palais—Smale Condition,Existence of Saddle Points 7.3 Local Analysis 7.4 Limits of Trajectories of the Gradient Flow 7.5 Floer Condition,Transversality and Z2—Cohomology 7.6 Orientations and Z—homology 7.7 Homotopies 7.8 Graph flows 7.9 Orientations 7.10 The Morse Inequalities 7.11 The Palais—Smale Condition and the Existence of Closed Geodesics Exercises for Chapter 7 8 Harmonic Maps between Riemannian Manifolds 8.1 Definitions 8.2 Formulas for Harmonic Maps.The Bochner Technique 8.3 The Energy Integral and Weakly Harmonic Maps 8.4 Higher Regularity 8.5 Existence of Harmonic Maps for Nonpositive Curvature 8.6 Regularity of Harmonic Maps for Nonpositive Curvature 8.7 Harmonic Map Uniqueness and Applications Exercises for Chapter 8 9 Harmonic Maps from Riemann Surfaces 9.1 Two—dimensional Harmonic Mappings 9.2 The Existence of Harmonic Maps in Two Dimensions 9.3 Regularity Results Exercises for Chapter 9 10 Variational Problems from Quantum Field Theory 10.1 The Ginzburg—Landau Functional 10.2 The Seiberg—Witten Functional 10.3 Dirac—harmonic Maps Exercises for Chapter 10 A Linear Elliptic Partial Differential Equations A.1 Sobolev Spaces A.2 Linear Elliptic Equations A.3 Linear Parabolic Equations B Fundamental Groups and Covering Spaces Bibliography Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网