您好,欢迎来到聚文网。 登录 免费注册
量子混沌理论(第3版)(英文版)

量子混沌理论(第3版)(英文版)

  • 出版社: 世界图书出版公司
  • 作者: (德)哈克
  • 商品条码: 9787510094668
  • 版次: 1
  • 开本: 24开
  • 页数: 573
  • 出版年份: 2015
  • 印次: 1
定价:¥99 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
哈克编著的《量子混沌理论(第3版)》是一部 研究量子混沌的经典教程,随着近年来这个新兴领域 的快速发展,本书中最近发展成果包括其中,使得这 本书内容更加完善。书中详细讲述了非线性动力系统 的量子方面、区分规则和不规则运动的量子标准、反 酉对称(一般化时间反演)、随机矩阵理论、并且详 细讲述了耗散系统的量子力学。每章都有问题精选, 可以更好地帮助读者检验所学到的新方法和新理论。 除了大量的更新和修订;在这新的版本中全面展开讲 述了谱波动知识;插入一章讲述经典哈密顿混沌,用 了大量的篇幅展示了半经典理论的发展,自称体系。
目录
1 Introduction References 2 Time Reversal and Unitary Symmetries 2.1 Autonomous Classical Flows 2.2 Spinless Quanta 2.3 Spin- 1/2 Quanta 2.4 Hamiltonians Without T Invariance 2.5 T Invariant Hamiltonians, T2 = 1 2.6 Kramers' Degeneracy 2.7 Kramers' Degeneracy and Geometric Symmetries 2.8 Kramers' Degeneracy Without Geometric Symmetries 2.9 Nonconventional Time Reversal 2.10 Stroboscopic Maps for Periodically Driven Systems 2.11 Time Reversal for Maps 2.12 Canonical Transformations for Floquet Operators 2.13 Beyond Dyson's Threefold Way 2.13.1 Normal-Superconducting Hybrid Structures. 2.13.2 Systems with Chiral Symmetry 2.14 Problems References 3 Level Repulsion 3. l Preliminaries 3.2 Symmetric Versus Nonsymmetric H or F 3.3 Kramers' Degeneracy 3.4 Universality Classes of Level Repulsion 3.5 Nonstandard Symmetry Classes 3.6 Experimental Observation of Level Repulsion 3.7 Problems References 4 Random-Matrix Theory 4.1 Preliminaries 4.2 Ganssian Ensembles of Hermitian Matrices 4.3 Eigenvalue Distributions for Dyson's Ensembles 4.4 Eigenvalue Distributions for Nonstandard Symmetry Classes 4.5 Level Spacing Distributions 4.6 Invariance of the Integration Measure 4.7 Average Level Density 4.8 Unfolding Spectra 4.9 Eigenvector Distributions 4.9. l Single-Vector Density 4.9.2 Joint Density of Eigenvectors 4.10 Ergodicity of the Level Density 4.11 Dyson's Circular Ensembles 4.12 Asymptotic Level Spacing Distributions 4.13 Determinants as Gaussian Grassmann Integrals 4.14 Two-Point Correlations of the Level Density 4.14.1 Two-Point Correlator and Form Factor 4.14.2 Form Factor for the Poissonian Ensemble 4.14.3 Form Factor for the CUE 4.14.4 Form Factor for the COE 4.14.5 Form Factor for the CSE 4.15 Newton's Relations 4.15.1 Traces Versus Secular Coefficients 4.15.2 Solving Newton's Relations 4.16 Selfinversiveness and Riemann-Siegel Lookalike 4.17 Higher Correlations of the Level Density 4.17.1 Correlation and Cumulant Functions 4.17.2 Ergodicity of the Two-Point Correlator 4.17.3 Ergodicity of the Form Factor 4.17.4 Joint Density of Traces of Large CUE Matrices 4.18 Correlations of Secular Coefficients 4.19 Fidelity of Kicked Tops to Random-Matrix Theory 4.20 Problems References 5 Level Clustering 5.1 Preliminaries 5.2 Invariant Tori of Classically Integrable Systems 5.3 Einstein-Brillouin-Keller Approximation 5.4 Level Crossings for Integrable Systems 5.5 Poissonian Level Sequences 5.6 Superposition of Independent Spectra 5.7 Periodic Orbits and the Semiclassical Density of Levels 5.8 Level Density Fluctuations for Integrable Systems 5.9 Exponential Spacing Distribution for Integrable Systems 5.10 Equivalence of Different Unfoldings 5.11 Problems References 6 Level Dynamics 6.1 Preliminaries 6.2 Fictitious Particles (Pechukas-Yukawa Gas) 6.3 Conservation Laws 6.4 Intermultiplet Crossings 6.5 Level Dynamics for Classically Integrable Dynamics 6.6 Two-Body Collisions 6.7 Ergodicity of Level Dynamics and Universality of Spectral Fluctuations 6.7.1 Ergodicity 6.7.2 Collision Time 6.7.3 Universality 6.8 Equilibrium Statistics 6.9 Random-Matrix Theory as Equilibrium Statistical Mechanics 6.9.1 General Strategy 6.9.2 A Typical Coordinate Integral 6.9.3 Influence of a Typical Constant of the Motion 6.9.4 The General Coordinate Integral 6.9.5 Concluding Remarks 6.10 Dynamics of Rescaled Energy Levels 6.11 Level Curvature Statistics 6.12 Level Velocity Statistics 6.13 Dyson's Brownian-Motion Model 6.14 Local and Global Equilibrium in Spectra 6.15 Problems References 7 Quantum Localization 7.1 Preliminaries 7.2 Localization in Anderson's Hopping Model 7.3 The Kicked Rotator as a Variant of Anderson's Model 7.4 Lloyd's Model 7.5 The Classical Diffusion Constant as the Quantum Localization Length 7.6 Absence of Localization for the Kicked Top 7.7 The Rotator as a Limiting Case of the Top 7.8 Problems References 8 Dissipative Systems 8.1 Preliminaries 8.2 Hamiltonian Embeddings 8.3 Time-Scale Separation for Probabilities and Coherences 8.4 Dissipative Death of Quantum Recurrences 8.5 Complex Energies and Quasi-Energies 8.6 Different Degrees of Level Repulsion for Regular and Chaotic Motion 8.7 Poissonian Random Process in the Plane 8.8 Ginibre's Ensemble of Random Matrices 8.8.1 Normalizing the Joint Density 8.8.2 The Density of Eigenvalues 8.8.3 The Reduced Joint Densities 8.8.4 The Spacing Distribution 8.9 General Properties of Generators 8.10 Universality of Cubic Level Repulsion 8.10.1 Antiunitary Symmetries 8.10.2 Microreversibility 8.11 Dissipation of Quantum Localization 8.11.1 Zaslavsky's Map 8.11.2 Damped Rotator 8.11.3 Destruction of Localization 8.12 Problems References 9 Classical Hamiltonian Chaos 9.1 Preliminaries 9.2 Phase Space, Hamilton's Equations and All That 9.3 Action as a Generating Function 9.4 Linearized Flow and Its Jacobian Matrix 9.5 Liouville Picture 9.6 Symplectic Structure 9.7 Lyapunov Exponents 9.8 Stretching Factors and Local Stretching Rates 9.9 Poincar6 Map 9.10 Stroboscopic Maps of Periodically Driven Systems 9.11 Varieties of Chaos 9.12 The Sum Rule of Hannay and Ozorio de Almeida 9.12.1 Maps 9.12.2 Flows 9.13 Propagator and Zeta Function 9.14 Exponential Stability of the Boundary Value Problem .. 9.15 Sieber-Richter Self-Encounter and Partner Orbit 9.15.1 Non-technical Discussion 9.15.2 Quantitative Discussion of 2-Encounters 9.16 l-Encounters and Orbit Bunches 9.17 Densities of Arbitrary Encounter Sets 9.18 Problems References 10 Semiclassical Roles for Classical Orbits 10.1 Preliminaries 10.2 Van Vleck Propagator 10.2.1 Maps 10.2.2 Flows 10.3 Gutzwiller's Trace Formula 10.3.1 Maps 10.3.2 Flows 10.3.3 Weyrs Law 10.3.4 Limits of Validity and Outlook 10.4 Lagrangian Manifolds and Maslov Theory 10.4.1 Lagrangian Manifolds 10.4.2 Elements of Maslov Theory 10.4.3 Maslov Indices as Winding Numbers 10.5 Riemann-Siegel Look-Alike 10.6 Spectral Two-Point Correlator 10.6.1 Real and Complex Correlator 10.6.2 Local Energy Average 10.6.3 Generating Function 10.6.4 Periodic-Orbit Representation 10.7 Diagonal Approximation 10.7.1 Unitary Class 10.7.2 Orthogonal Class 10.8 Off-Diagonal Contributions, Unitary Symmetry Class 10.8.1 Structures of Pseudo-Orbit Quadruplets 10.8.2 Diagrammatic Rules 10.8.3 Example of Structure Contributions: A Single 2-encounter 10.8.4 Cancellation of all Encounter Contributions for the Unitary Class 10.9 Semiclassical Construction of a Sigma Model,Unitary Symmetry Class 10.9.1 Matrix Elements for Ports and Contraction Lines for Links 10.9.2 Wick's Theorem and Link Summation 10.9.3 Signs 10.9.4 Proof of Contraction Rules, Unitary Case 10.9.5 Emergence of a Sigma Model 10.10 Semiclassical Construction of a Sigma Model, Orthogonal Symmetry Class 10.10.1 Structures 10.10.2 Leading-Order Contributions 10.10.3 Symbols for Ports and Contraction Lines for Links 10.10.4 Gauss and Wick 10.10.5 Signs 10.10.6 Proof of Contraction Rules, Orthogonal Case 10.10.7 Sigma Model 10.11 Outlook 10.12 Mixed Phase Space 10.13 Problems References 11 Superanalysis for Random-Matrix Theory 11.1 Preliminaries 11.2 Semicircle Law for the Gaussian Unitary Ensemble 11.2.1 The Green Function and Its Average 11.2.2 The GUE Average 11.2.3 Doing the Superintegral 11.2.4 Two Remaining Saddle-Point Integrals 11.3 Superalgebra 11.3.1 Motivation and Generators of Grassmann Algebras 11.3.2 Supervectors, Supermatrices 11.3.3 Superdeterminants 11.3.4 Complex Scalar Product, Hermitian and Unitary Supermatrices 11.3.5 Diagonalizing Supermatrices 11.4 Superintegrals 11.4.1 Some Bookkeeping for Ordinary Gaussian Integrals 11.4.2 Recalling Grassmann Integrals 11.4.3 Gaussian Superintegrals 11.4.4 Some Properties of General Superintegrals 11.4.5 Integrals over Supermatrices, Parisi-Sourlas-Efetov-Wegner Theorem 11.5 The Semicircle Law Revisited 11.6 The Two-Point Function of the Gaussian Unitary Ensemble 11.6.1 The Generating Function 11.6.2 Unitary Versus Hyperbolic Symmetry 11.6.3 Efetov's Nonlinear Sigma Model 11.6.4 Implementing the Zero-Dimensional Sigma Model 11.6.5 Integration Measure of the Nonlinear Sigma Model 11.6.6 Back to the Generating Function 11.6.7 Rational Parametrization of the Sigma Model 11.6.8 High-Energy Asymptotics 11.7 Universality of Spectral Fluctuations: Non-Gaussian Ensembles 11.7.1 Delta Functions of Grassmann Variables 11.7.2 Generating Function 11.8 Universal Spectral Fluctuations of Sparse Matrices 11.9 Thick Wires, Banded Random Matrices, One-Dimensional Sigma Model 11.9.1 Banded Matrices Modelling Thick Wires 11.9.2 Inverse Participation Ratio and Localization Length 11.9.3 One-Dimensional Nonlinear Sigma Model 11.9.4 Implementing the One-Dimensional Sigma Model 11.10 Problems References Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网