您好,欢迎来到聚文网。
登录
免费注册
网站首页
|
搜索
热搜:
磁力片
|
漫画
|
购物车
0
我的订单
商品分类
首页
幼儿
文学
社科
教辅
生活
销量榜
线性和非线性规划(第3版)(英文版)
出版社: 世界图书出版公司
作者: (美)吕恩博格
商品条码: 9787510094736
版次: 1
开本: 24开
页数: 546
出版年份: 2015
印次: 1
定价:
¥99
销售价:
登录后查看价格
¥{{selectedSku?.salePrice}}
库存:
{{selectedSku?.stock}}
库存充足
{{item.title}}:
{{its.name}}
加入购物车
立即购买
加入书单
收藏
精选
¥5.83
世界图书名著昆虫记绿野仙踪木偶奇遇记儿童书籍彩图注音版
¥5.39
正版世界名著文学小说名家名译中学生课外阅读书籍图书批发 70册
¥8.58
简笔画10000例加厚版2-6岁幼儿童涂色本涂鸦本绘画本填色书正版
¥5.83
世界文学名著全49册中小学生青少年课外书籍文学小说批发正版
¥4.95
全优冲刺100分测试卷一二三四五六年级上下册语文数学英语模拟卷
¥8.69
父与子彩图注音完整版小学生图书批发儿童课外阅读书籍正版1册
¥24.2
好玩的洞洞拉拉书0-3岁宝宝早教益智游戏书机关立体翻翻书4册
¥7.15
幼儿认字识字大王3000字幼儿园中班大班学前班宝宝早教启蒙书
¥11.55
用思维导图读懂儿童心理学培养情绪管理与性格培养故事指导书
¥19.8
少年读漫画鬼谷子全6册在漫画中学国学小学生课外阅读书籍正版
¥64
科学真好玩
¥12.7
一年级下4册·读读童谣和儿歌
¥38.4
原生态新生代(传统木版年画的当代传承国际研讨会论文集)
¥11.14
法国经典中篇小说
¥11.32
上海的狐步舞--穆时英(中国现代文学馆馆藏初版本经典)
¥21.56
猫的摇篮(精)
¥30.72
幼儿园特色课程实施方案/幼儿园生命成长启蒙教育课程丛书
¥24.94
旧时风物(精)
¥12.04
三希堂三帖/墨林珍赏
¥6.88
寒山子庞居士诗帖/墨林珍赏
¥6.88
苕溪帖/墨林珍赏
¥6.88
楷书王维诗卷/墨林珍赏
¥9.46
兰亭序/墨林珍赏
¥7.74
祭侄文稿/墨林珍赏
¥7.74
蜀素帖/墨林珍赏
¥12.04
真草千字文/墨林珍赏
¥114.4
进宴仪轨(精)/中国古代舞乐域外图书
¥24.94
舞蹈音乐的基础理论与应用
内容简介
吕恩博格编著的《线性和非线性规划(第3版) (英文版)》这部研究运筹学的经典教材,在原来版 本的基本上做了大量的修订补充,涵盖了这个运算领 域的大量的理论洞见,是各行各业分析学者和运筹学 研究人员所必需的。书中将运筹问题的纯分析特性和 解决其的算术行为联系起来,将最新鲜的第一手运筹 学方法包括其中。目次:导论;(线性规划):线性 规划的基本性质;单纯型方法;对偶;内部点方法; 运输和网络流问题;(无条件问题)解的基本特性和 运算;基本下降方法;共轭方向法;拟牛顿法;(条 件最小化)条件最小化条件;原始方法;惩罚和柱式 开采法;对偶和割平面方法;原始对偶方法;附录A :数学回顾;凸集合;高斯估计。 本书读者对象:数学、特别是运筹学专业的高年 级本科生、研究生和工程人员。
目录
Chapter 1.Introduction 1.1.Optimization 1.2.Types of Problems 1.3.Size of Problems 1.4.Iterative Algorithms and Convergence PART Ⅰ Linear Programming Chapter 2.Basic Properties of Linear Programs 2.1.Introduction 2.2.Examples of Linear Programming Problems 2.3.Basic Solutions 2.4.The Fundamental Theorem of Linear Programming 2.5.Relations to Convexity 2.6.Exercises Chapter 3.The Simplex Method 3.1.Pivots 3.2.Adjacent Extreme Points 3.3.Determining a Minimum Feasible Solution 3.4.Computational Procedure—Simplex Method 3.5.Artifi Variables 3.6.Matrix Form of the Simplex Method 3.7.The Revised Simplex Method 3.8.The Simplex Method and LU Decomposition 3.9.Decomposition 3.10.Summary 3.11.Exercises Chapter 4.Duality 4.1.Dual Linear Programs 4.2.The Duality Theorem 4.3.Relations to the Simplex Procedure 4.4.Sensitivity and Complementary Slackness 4.5.The Dual Simplex Method 4.6.The—Primal—Dual Algorithm 4.7.Reduction of Linear Inequalities 4.8.Exercises Chapter 5.Interior—Point Methods 5.1.Elements of Complexity Theory 5.2.The Simplex Method is not Polynomial—Time 5.3.The Ellipsoid Method 5.4.The Analytic Center 5.5.The Central Path 5.6.Solution Strategies 5.7.Termination and Initialization 5.8.Summary 5.9.Exercises Chapter 6.Transportation and Network Flow Problems 6.1.The Transportation Problem 6.2.Finding a Basic Feasible Solution 6.3.Basis Triangularity 6.4.Simplex Method for Transportation Problems 6.5.The Assignment Problem 6.6.Basic Network Concepts 6.7.Minimum Cost Flow 6.8.Maximal Flow 6.9.Summary 6.10.Exercises PART Ⅱ Unconstrained Problems Chapter 7.Basic Properties of Solutions and Algorithms 7.1.First—Order Necessary Conditions 7.2.Examples of Unconstrained Problems 7.3.Second—Order Conditions 7.4.Convex and Concave Functions 7.5.Minimization and Maximization of Convex Functions 7.6.Zero—Order Conditions 7.7.Global Convergence of Descent Algorithms 7.8.Speed of Convergence 7.9.Summary 7.10.Exercises Chapter 8.Basic Descent Methods 8.1.Fibonacci and Golden Section Search 8.2.Line Search by Curve Fitting 8.3.Global Convergence of Curve Fitting 8.4.Closedness of Line Search Algorithms 8.5.Inaccurate Line Search 8.6.The Method of Steepest Descent 8.7.Applications of the Theory 8.8.Newton's Method 8.9.Coordinate Descent Methods 8.10.Spacer Steps 8.11.Summary 8.12.Exercises Chapter 9.Conjugate Direction Methods 9.1.Conjugate Directions 9.2.Descent Properties of the Conjugate Direction Method 9.3.The Conjugate Gradient Method 9.4.The C—G Method as an Optimal Process 9.5.The Partial Conjugate Gradient Method 9.6.Extension to Nonquadratic Problems 9.7.Parallel Tangents 9.8.Exercises Chapter 10.Quasi—Newton Methods 10.1.Modified Newton Method 10.2.Construction of the Inverse 10.3.Davidon—Fletcher—Powell Method 10.4.The Broyden Family 10.5.Convergence Properties 10.6.Scaling 10.7.Memoryless Quasi—Newton Methods 10.8.Combination of Steepest Descent and Newton's Method 10.9.Summary 10.10.Exercises PART Ⅲ Constrained Minimization Chapter 11.Constrained Minimization Conditions 1.1.Constraints 1.2.Tangent Plane 1.3.First—Order Necessary Conditions(Equality Constraints) 1.4.Examples 1.5.Second—Order Conditions 1.6.Eigenvalues in Tangent Subspace 1.7.Sensitivity 1.8.Inequality Constraints 1.9.Zero—Order Conditions and Lagrange Multipliers 1.10.Summary 1.11.Exercises Chapter 12.Primal Methods 12.1.Advantage of Primal Methods 12.2.Feasible Direction Methods 12.3.Active Set Methods 12.4.The Gradient Projection Method 12.5.Convergence Rate of the Gradient Projection Method 12.6.The Reduced Gradient Method 12.7.Convergence Rate of the Reduced Gradient Method 12.8.Variations 12.9.Summary 12.10.Exercises Chapter 13.Penalty and Barrier Methods 13.1.Penalty Methods 13.2.Barrier Methods 13.3.Properties of Penalty and Barrier Functions 13.4.Newton's Method and Penalty Functions 13.5.Conjugate Gradients and Penalty Methods 13.6.Normalization of Penalty Functions 13.7.Penalty Functions and Gradient Projection 13.8.Exact Penalty Functions 13.9.Summary 13.10.Exercises Chapter 14.Dual and Cutting Plane Methods 14.1.Global Duality 14.2.Local Duality 14.3.Dual Canonical Convergence Rate 14.4.Separable Problems 14.5.Augmented Lagrangians 14.6.The Dual Viewpoint 14.7.Cutting Plane Methods 14.8.Kelley's Convex Cutting Plane Algorithm 14.9.Modifications 14.10.Exercises Chapter 15.Primal—Dual Methods 15.1.The Standard Problem 15.2.Strategies 15.3.A Simple Merit Function 15.4.Basic Primal—Dual Methods 15.5.Modified Newton Methods 15.6.Descent Properties 15.7.Rate of Convergence 15.8.Interior Point Methods 15.9.Semidefinite Programming 15.10.Summary 15.11.Exercises Appendix A.Mathematical Review A.1.Sets A.2.Matrix Notation A.3.Spaces A.4.Eigenvalues and Quadratic Forms A.5.Topological Concepts A.6.Functions Appendix B.Convex Sets B.1.Basic Definitions B.2.Hyperplanes and Polytopes B.3.Separating and Supporting Hyperplanes B.4.Extreme Points Appendix C.Gaussian Elimination Bibliography Index
×
Close
添加到书单
加载中...
点此新建书单
×
Close
新建书单
标题:
简介:
蜀ICP备2024047804号
Copyright 版权所有 © jvwen.com 聚文网