您好,欢迎来到聚文网。 登录 免费注册
时间序列的理论与方法(第2版)(英文版)

时间序列的理论与方法(第2版)(英文版)

  • 出版社: 世界图书出版公司
  • 作者: (美)布雷克韦尔
  • 商品条码: 9787510094712
  • 版次: 1
  • 开本: 24开
  • 页数: 577
  • 出版年份: 2015
  • 印次: 1
定价:¥95 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
由布雷克韦尔著的《时间序列的理论与方法(第2 版)(英文版)》是一部有关时间序列的高等教材,这 版对原来的版本通篇做了大量的修订和扩充,包括增 加了全新的一章讲述状态空间。内容详尽,包括了学 习时间序列能够经常用到的所有方法,书的一开始从 引进Hilbert空间开始,紧接着平稳ARMA过程及其他 。第10章有关平稳过程的谱推断很有新意,考虑频率 已知和未知的周期性各种检验。
目录
Preface to the Second Edition Preface to the First Edition CHAPTER 1 Stationary Time Series 1.1 Examples of Time Series 1.2 Stochastic Processes 1.3 Stationarity and Strict Stationarity 1.4 The Estimation and Elimination of Trend and Seasonal Components !.5 The Autocovariance Function of a Stationary Process 1.6 The Multivariate Normal Distribution 1.7 Applications of Kolmogorov's Theorem Problems CHAPTER 2 Hilbert Spaces 2.1 Inner-Product Spaces and Their Properties 2.2 Hilbert Spaces 2.3 The Projection Theorem 2.4 Orthonormal Sets 2.5 Projection in R 2.6 Linear Regression and the General Linear Model 2.7 Mean Square Convergence, Conditional Expectation and Best Linear Prediction in L2(t, P) 2.8 Fourier Series 2.9 Hilbert Space Isomorphisms 2.10* The Completeness of L2 (D, ,, P) 2.11* Complementary Results for Fourier Series Problems CHAPTER 3 Stationary ARMA Processes 3.1 Causal and Invertible ARMA Processes 3.2 Moving Average Processes of Infinite Order 3.3 Computing the Autocovariance Function of an ARMA(p, q) Process 3.4 The Partial Autocgrrelation Function 3.5 The Autocovariance Generating Function 3.6* Homogeneous Linear Difference Equations with Constant Coefficients Problems CHAPTER 4 The Spectral Representation of a Stationary Process 4.1 Complex-Valued Stationary Time Series 4.2 The Spectral Distribution of a Linear Combination of Sinusoids 4.3 Herglotz's Theorem 4.4 Spectral Densities and ARMA Processes 4.5* Circulants and Their Eigenvalues 4.6* Orthogonal Increment Processes on [- n, n] 4.7* Integration with Respect to an Orthogonal Increment Process 4.8* The Spectral Representation 4.9* Inversion Formulae 4.10* Time-lnvariant Linear Filters 4.11* Properties of the Fourier Approximation hn to I(v,w) Problems CHAPTER 5 Prediction of Stationary Processes 5.1 The Prediction Etuations in the Time Domain 5.2 Recursive Methols for Computing Best Linear Predictors 5.3 Recursive Prediction of an ARMA(p, q) Process 5.4 Prediction of a Stationary Gaussian Process; Prediction Bounds 5.5 Prediction of a Causal lnvertible ARMA Process in Terms ofXj,-∞ 0 6.3 Convergence in Distribution 6.4 Central Limit Theorems and Related Results Problems CHAPTER 7 Estimation of the Mean and the Autocovariance Function 7.1 Estimation of 7.2 Estimation ofγ(.) and p(.) 7.3* Derivation of the Asymptotic Distributions Problems CHAPTER 8 Estimation for ARMA Models 8.1 The Yule-Walker Equations and Parameter Estimation for Autoregressive Processes 8.2 Preliminary Estimation for Autoregressive Processes Using the Durbin-Levinson Algorithm 8.3 Preliminary Estimation for Moving Average Processes Using the Innovations Algorithm 8.4 Preliminary Estimation for ARMA(p, q) Processes 8.5 Remarks on Asymptotic Efficiency 8.6 Recursive Calculation of the Likelihood of an Arbitrary Zero-Mean Gaussian Process 8.7 Maximum Likelihood and Least Squares Estimation for ARMA Processes 8.8 Asymptotic Properties of the Maximum Likelihood Estimators 8.9 Confidence Intervals for the Parameters of a Causal Invertible ARMA Process 8.10* Asymptotic Behavior of the Yule-Walker Estimates 8.11 * Asymptotic Normality of Parameter Estimators Problems CHAPTER 9 Model Building and Forecasting with ARIMA Processes 9.1 ARIMA Models for Non-Stationary Time Series 9.2 Identification Techniques 9.3 Order Selection 9.4 Diagnostic Checking 9.5 Forecasting ARIMA Models 9.6 Seasonal ARIMA Models Problems CHAPTER 10 Inference for the Spectrum of a Stationary Process 10.1 The Periodogram 10.2 Testing for the Presence of Hidden Periodicities 10.3 Asymptotic Properties of the Periodogram 10.4 Smoothing the Periodogram 10.5 Confidence Intervals for the Spectrum 10.6 Autoregressive, Maximum Entropy, Moving Average and Maximum Likelihood ARMA Spectral Estimators 10.7 The Fast Fourier Transform (FFT) Algorithm 10.8* Derivation of the Asymptotic Behavior of the Maximum Likelihood and Least Squares Estimators of the Coefficients of an ARMA Process Problems CHAPTER 11 Multivariate Time Series 11.1 Second Order Properties of Multivariate Time Series 11.2 Estimation of the Mean and Covariance Function 11.3 Multivariate ARMA Processes 11.4 Best Linear Predictors of Second Order Random Vectors 11.5 Estimation for Multivariate ARMA Processes 11.6 The Cross Spectrum 11.7 Estimating the Cross Spectrum 11.8* The Spectral Representation of a Multivariate Stationary Time Series Problems CHAPTER 12 State-Space Models and the Kalman Recursions 12.1 State-Space Models 12.2 The Kalman Recursions 12.3 State-Space Models with Missing Observations 12.4 Controllability and Observability 12.5 Recursive Bayesian State Estimation Problems CHAPTER 13 Further Topics 13.1 Transfer Function Modelling 13.2 Long Memory Processes 13.3 Linear Processes with Infinite Variance 13.4 Threshold Models Problems Appendix: Data Sets Bibliography Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网