您好,欢迎来到聚文网。 登录 免费注册
单复变函数(第2版)(英文版)

单复变函数(第2版)(英文版)

  • 字数: 267
  • 出版社: 世界图书出版公司
  • 作者: John B.Conway|责编:刘慧//高蓉
  • 商品条码: 9787506271912
  • 版次: 1
  • 开本: 24开
  • 页数: 317
  • 出版年份: 2004
  • 印次: 3
定价:¥79 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
内容简介
这本书的目的是作为一 个复变函数理论的第一堂课 的教科书,学生在数学上有 足够的理解和执行论点的能 力。阅读这本书的实际先决 条件是相当小的;不多的是 基础微积分和一些关于偏导 数的事实。对所用的高级微 积分中的一些观点进行了详 细的证明。
目录
Preface for the Second Edition Preface Contents, Volume Ⅱ Ⅰ.The Complex Number System §1.The real numbers §2.The field of complex numbers §3.The complex plane §4.Polar representation and roots of complex numbers §5.Lines and half planes in the complex plane §6.The extended plane and its spherical representation Ⅱ.Metric Spaces and the Topology of C §1.Definition and examples of metric spaces §2.Connectedness §3.Sequences and completeness §4.Compactness §5.Continuity §6.Uniform convergence Ⅲ.Elementary Properties and Examples of Analytic Functions §1.Power series §2.Analytic functions §3.Analytic functions as mappings, Mobius transformations Ⅳ.Complex Integration §1.Riemann-Stieltjes integrals §2.Power series representation of analytic functions §3.Zeros of an analytic function §4.The index of a closed curve §5.Cauchy's Theorem and Integral Formula §6.The homotopic version of Cauchy's Therorem and simple connectivity §7.Counting zeros; the Open Mapping Theorem §8.Goursat's Theorem Ⅴ.Singularities §1.Classification of singularities §2.Residues §3.The Argument Principle Ⅵ.The Maximum Modulus Theorem §1.The Maximum Principle §2.Schwarz's Lemma §3.Convex functions and Hadamard's Three Circles Theorem §4.Phragmen-Lindelof Theorem Ⅶ.Compactness and Convergence in the Space of Analytic Functions §1.The space of continuous functions C (G, Ω) §2.Spaces of analytic functions §3.Spaces of meromorphic functions §4.The Riemann Mapping Theorem §5.Weierstrass Factorization Theorem §6.Factorization of the sine function §7.The gamma function §8.The Ricmann zeta function Ⅷ.Runge's Theorem §1.Runge's Theorem §2.Simple connectedness §3.Mittag-Leffler's Theorem Ⅸ.Analytic Continuation and Riemann Surfaces §1.Schwarz Reflection Principle §2.Analytic Continuation Along A Path §3.Mondromy Theorem §4.Topological Spaces and Neighborhood Systems §5.The Sheaf of Germs of Analytic Functions on an Open Set §6.Analytic ManifoIds §7.Covering spaces Ⅹ.Harmonic Functions §1.Basic Properties of harmonic functions §2.Harmonic functions on a disk §3.Subharmonic and SUPerharmonic functions §4.The Dirichlet Problem §5.Gregn's Functions Ⅺ.Entire Functions §1.Jensen's Formula §2.The genus and order of an entire function §3.Hadamard Factorization Theorem Ⅻ.The Range of an Analytic Function §1.Bloch's Theorem §2.The Little Picard Theorem §3.Schottky's Theorem §4.The Great Picard Theorem Appendix A: Calculus for Complex Valued Functions on an Interval Appendix B: Suggestions for Further Study and Bibliographical Notes References Index List of Symbols

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网