Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Preliminaries
Part 1: Preliminaries
Part 2: Algebraic Structures
Part Ⅰ Basic Linear Algebra
1 Vector Spaces
Vector Spaces
Subspaces
Direct Sums
Spanning Sets and Linear Independence
The Dimension of a Vector Space
Ordered Bases and Coordinate Matrices
The Row and Column Spaces of a Matrix
The Complexification of a Real Vector Space
Exercises
2 Linear Transformations
Linear Transformations
The Kernel and Image of a Linear Transformation
Isomorphisms
The Rank Plus Nullity Theorem
Linear Transformations from Fn to Fm
Change of Basis Matrices
The Matrix of a Linear Transformation
Change of Bases for Linear Transformations
Equivalence of Matrices
Similarity of Matrices
Similarity of Operators
Invariant Subspaces and Reducing Pairs
Projection Operators
Topological Vector Spaces
Linear Operators on Vc
Exercises
3 The Isomorphism Theorems
Quotient Spaces
The Universal Property of Quotients and the First Isomorphism Theorem
Quotient Spaces, Complements and Codimension
Additional Isomorphism Theorems
Linear Functionals
Dual Bases
Reflexivity
Annihilators
Operator Adjoints
Exercises
4 Modules Ⅰ: Basic Properties
Motivation
Modules
Submodules
Spanning Sets