您好,欢迎来到聚文网。 登录 免费注册
平衡态统计物理学(第3版)

平衡态统计物理学(第3版)

  • 出版社: 世界图书出版公司
  • 作者: (加)普利史可
  • 商品条码: 9787510024009
  • 版次: 1
  • 开本: 24开
  • 页数: 620
  • 出版年份: 2010
  • 印次: 1
定价:¥79 销售价:登录后查看价格  ¥{{selectedSku?.salePrice}} 
库存: {{selectedSku?.stock}} 库存充足
{{item.title}}:
{{its.name}}
精选
目录
Preface to the First Edition Preface to the Second Edition Preface to the Third Edition 1 Review of Thermodynamics 1.1 State Variables and Equations of State 1.2 Laws of Thermodynamics 1.2.1 First law 1.2.2 Second law 1.3 Thermodynamic Potentials 1.4 Gibbs-Duhem and Maxwell Relations 1.5 Response Functions 1.6 Conditions for Equilibrium and Stability 1.7 Magnetic Work 1.8 Thermodynamics of Phase Transitions 1.9 Problems 2 Statistical Ensembles 2.1 Isolated Systems: Microcanonical Ensemble 2.2 Systems at Fixed Temperature: Canonical Ensemble 2.3 Grand Canonical Ensemble 2.4 Quantum Statistics 2.4.1 Harmonic oscillator 2.4.2 Noninteracting fermions 2.4.3 Noninteracting bosons 2.4.4 Density matrix 2.5 Maximum Entropy Principle 2.6 Thermodynamic Variational Principles . 2.6.1 Schottky defects in a crystal 2.7 Problems 3 Mean Field and Landau Theory 3.1 Mean Field Theory of the Ising Model 3.2 Bragg-Williams Approximation 3.3 A Word of Warning 3.4 Bethe Approximation 3.5 Critical Behavior of Mean Field Theories 3.6 Ising Chain: Exact Solution 3.7 Landau Theory of Phase Transitions 3.8 Symmetry Considerations 3.8.1 Potts model 3.9 Landau Theory of Tricritical Points 3.10 Landau-Ginzburg Theory for Fluctuations 3.11 Multicomponent Order Parameters: n-Vector Model 3.12 Problems 4 Applications of Mean Field Theory 4.1 Order-Disorder Transition 4.2 Maier-Sanpe Model 4.3 Blume——Emery-Grifliths Model 4.4 Mean Field Theory of Fluids: van der Waals Approach 4.5 Spruce Budworm Model 4.6 A Non-Equilibrium System: Two Species Asymmetric Exclusion Model 4.7 Problems 5 Dense Gases and Liquids 5.1Virial Expansion 5.2 Distribution Functions 5.2.1 Pair correlation function 5.2.2 BBGKY hierarchy 5.2.3 Ornstein-Zernike equation 5.3 Perturbation Theory 5.4 Inhomogeneous Liquids 5.4.1 Liquid-vapor interface 5.4.2 Capillary waves 5.5 Density-Functional Theory 5.5.1 Functional differentiation 5.5.2 Free-energy functionals and correlation functions 5.5.3 Applications 5.6 Problems 6 Critical Phenomena I 6.1 Ising Model in Two Dimensions 6.1.1 Transfer matrix 6.1.2 Transformation to an interacting fermion problem 6.1.3 Calculation of eigenvalues 6.1.4 Thermodynamic functions 6.1.5 Concluding remarks 6.2 Series Expansions 6.2.1 High-temperature expansions 6.2.2 Low-temperature expansions 6.2.3 Analysis of series 6.3 Scaling 6.3.1 Thermodynamic considerations 6.3.2 Scaling hypothesis 6.3.3 Kadanoff block spins 6.4 Finite-Size Scaling 6.5 Universality 6.6 Kosterlitz-Thouless Transition 6.7 Problems 7 Critical Phenomena II: The Renormalization Group 7.1 The Ising Chain Revisited 7.2 Fixed Points 7.3 An Exactly Solvable Model: Ising Spins on a Diamond Fractal 7.4 Position Space Renormalization: Cumulant Method 7.4.1 First-order approximation 7.4.2 Second-order approximation 7.5 Other Position Space Renormalization Group Methods 7.5.1 Finite lattice methods 7.5.2 Adsorbed monolayers: Ising antiferromagnet 7.5.3 Monte Carlo renormalization 7.6 Phenomen01ogical Renormalization Group 7.7 The e-Expansion 7.7.1 The Gaussian model 7.7.2 The S4 model 7.7.3 Conclusion Appendix: Second Order Cumulant Expansion 7.8 Problems 8 Stochastic Processes 8.1 Markov Processes and the Master Equation 8.2 Birth and Death Processes 8.3 Branching Processes 8.4 Fokker-Planck Equation 8.5 Fokker-Planck Equation with Several Variables: SIR Model 8.6 Jump Moments for Continuous Variables 8.6.1 Brownian motion 8.6.2 Rayleigh and Kramers equations 8.7 Diffusion, First Passage and Escape 8.7.1 Natural boundaries: The Kimura-Weiss model for genetic drift 8.7.2 Artificial boundaries 8.7.3 First passage time and escape probability 8.7.4 Kramers escape rate 8.8 Transformations of the Fokker-Planck Equation 8.8.1 Heterogeneous diffusion 8.8.2 Transformation to the SchrSdinger equation 8.9 Problems 9 Simulations 9.1 Molecular Dynamics 9.1.1 Conservative molecular dynamics 9.1.2 Brownian dynamics 9.1.3 Data analysis 9.2 Monte Carlo Method 9.2.1 Discrete time Markov processes 9.2.2 Detailed balance and the Metropolis algorithm 9.2.3 Histogram methods 9.3 Data Analysis 9.3.1 Fluctuations 9.3.2 Error estimates 9.3.3 Extrapolation to the thermodynamic limit 9.4 The Hopfield Model of Neural Nets 9.5 Simulated Quenching and Annealing 9.6 Problems 10 Polymers and Membranes 10.1 Linear Polymers 10.1.1 The freely jointed chain 10.1.2 The Gaussian chain 10.2 Excluded Volume Effects: Flory Theory 10.3 Polymers and the n-Vector Model 10.4 Dense Polymer Solutions 10.5 Membranes 10.5.1 Phantom membranes 10.5.2 Self-avoiding membranes 10.5.3 Liquid membranes 10.6 Problems 11 Quantum Fluids 11.1 Bose Condensation 11.2 Superfluidity 11.2.1 Qualitative features of superfiuidity 11.2.2 Bogoliubov theory of the 4He excitation spectrum 11.3 Superconductivity 11.3.1 Cooper problem 11.3.2 BCS ground state 11.3.3 Finite-temperature BCS theory 11.3.4 Landau-Ginzburg theory of superconductivity 11.4 Problems 12 Linear Response Theory 12.1 Exact Results 12.1.1 Generalized susceptibility and the structure factor 12.1.2 Thermodynamic properties 12.1.3 Sum rules and inequalities 12.2 Mean Field Response 12.2.1 Dielectric function of the electron gas 12.2.2 Weakly interacting Bose gas 12.2.3 Excitations of the Heisenberg ferromagnet 12.2.4 Screening and plasmons 12.2.5 Exchange and correlation energy 12.2.6 Phon0ns in metals 12.3 Entropy Production, the Kubo Formula, and the Onsager Relations for Transport Coefficients 12.3.1 Kubo formula 12.3.2 Entropy production and generalized currents and forces 12.3.3 Microscopic reversibility: Onsager relations 12.4 The Boltzmann Equation 12.4.1 Fields, drift and collisions 12.4.2 DC conductivity of a metal 12.4.3 Thermal conductivity and thermoelectric effects 12.5 Problems 13 Disordered Systems 13.1 Single-Particle States in Disordered Systems 13.1.1 Electron states in one dimension 13.1.2 Transfer matrix 13.1.3 Localization in three dimensions 13.1.4 Density of states 13.2 Percolation 13.2.1 Scaling theory of percolation 13.2.2 Series expansions and renormalization group 13.2.3 Rigidity percolation 13.2.4 Conclusion 13.3 Phase Transitions in Disordered Materials 13.3.1 Statistical formalism and the replica trick 13.3.2 Nature of phase transitions 13.4 Strongly Disordered Systems 13.4.1 Molecular glasses 13.4.2 Spin glasses 13.4.3 Sherrington-Kirkpatrick model 13.5 Problems A Occupation Number Representation Bibliography Index

蜀ICP备2024047804号

Copyright 版权所有 © jvwen.com 聚文网