目录
第一部分 一元实变量函数的Lebesgue积分
第0章 集合、映射与关系的预备知识3
0.1 集合的并与交3
0.2 集合间的映射4
0.3 等价关系、选择公理以及Zorn引理5
第1章 实数集:集合、序列与函数7
1.1 域、正性以及完备性公理7
1.2 自然数与有理数11
1.3 可数集与不可数集13
1.4 实数的开集、闭集和Borel集16
1.5 实数序列20
1.6 实变量的连续实值函数25
第2章 Lebesgue测度29
2.1 引言29
2.2 Lebesgue外测度31
2.3 Lebesgue可测集的代数34
2.4 Lebesgue可测集的外逼近和内逼近40
2.5 可数可加性、连续性以及Borel-Cantelli引理43
2.6 不可测集47
2.7 Cantor集和Cantor-Lebesgue函数49
第3章 Lebesgue可测函数54
3.1 和、积与复合54
3.2 序列的逐点极限与简单逼近60
3.3 Littlewood的三个原理、Egoroff定理以及Lusin定理64
第4章 Lebesgue积分68
4.1 Riemann积分68
4.2 有限测度集上的有界可测函数的
Lebesgue积分71
4.3 非负可测函数的Lebesgue积分79
4.4 一般的Lebesgue积分85
4.5 积分的可数可加性与连续性90
4.6 一致可积性:Vitali收敛定理92
第5章 Lebesgue积分:深入课题97
5.1 一致可积性和紧性:一般的Vitali收敛定理97
5.2 依测度收敛99
5.3 Riemann可积与Lebesgue可积的刻画102
第6章 微分与积分107
6.1 单调函数的连续性108
6.2 单调函数的可微性:Lebesgue定理109
6.3 有界变差函数:Jordan定理116
6.4 绝对连续函数119
6.5 导数的积分:微分不定积分124
6.6 凸函数130
第7章 Lp空间:完备性与逼近135
7.1 赋范线性空间135
7.2 Young、H鰈der与Minkowski不等式139
7.3 Lp是完备的:Riesz-Fischer定理144
7.4 逼近与可分性150
第8章 Lp空间:对偶与弱收敛155
8.1 关于Lp(1≤p<∞)的对偶的Riesz表示定理155
8.2 Lp中的弱序列收敛162
8.3 弱序列紧性171
8.4 凸泛函的最小化174
第二部分 抽象空间:度量空间、
拓扑空间、Banach空间
和Hilbert空间
第9章 度量空间:一般性质183
9.1 度量空间的例子183
9.2 开集、闭集以及收敛序列187
9.3 度量空间之间的连续映射190
9.4 完备度量空间193
9.5 紧度量空间197
9.6 可分度量空间204
第10章 度量空间:三个基本定理206
10.1 Arzelà-Ascoli定理206
10.2 Baire范畴定理211
10.3 Banach压缩原理215
第11章 拓扑空间:一般性质222
11.1 开集、闭集、基和子基222
11.2 分离性质227
11.3 可数性与可分性228
11.4 拓扑空间之间的连续映射230
11.5 紧拓扑空间233
11.6 连通的拓扑空间237
第12章 拓扑空间:三个基本定理239
12.1 Urysohn引理和Tietze延拓定理239
12.2 Tychonoff乘积定理244
12.3 Stone-Weierstrass定理247
第13章 Banach空间之间的连续线性算子253
13.1 赋范线性空间253
13.2 线性算子256
13.3 紧性丧失:无穷维赋范线性空间259
13.4 开映射与闭图像定理263
13.5 一致有界原理268
第14章 赋范线性空间的对偶271
14.1 线性泛函、有界线性泛函以及弱拓扑271
14.2 Hahn-Banach定理277
14.3 自反Banach空间与弱序列
收敛性282
14.4 局部凸拓扑向量空间286
14.5 凸集的分离与Mazur定理290
14.6 Krein-Milman定理295
第15章 重新得到紧性:弱拓扑298
15.1 Helly定理的Alaoglu推广298
15.2 自反性与弱紧性:Kakutani定理300
15.3 紧性与弱序列紧性:Eberlein-mulian定理302
15.4 弱拓扑的度量化305
第16章 Hilbert空间上的连续线性算子308
16.1 内积和正交性309
16.2 对偶空间和弱序列收敛313
16.3 Bessel不等式与规范正交基316
16.4 线性算子的伴随与对称性319
16.5 紧算子324
16.6 Hilbert-Schmidt定理326
16.7 Riesz-Schauder定理:Fredholm算子的刻画329
第三部分 测度与积分:一般理论
第17章 一般测度空间:性质与构造337
17.1 测度与可测集337
17.2 带号测度:Hahn与Jordan分解342
17.3 外测度诱导的Carathéodory测度346
17.4 外测度的构造349
17.5 将预测度延拓为测度:Carathéodory-Hahn定理352
第18章 一般测度空间上的积分359
18.1 可测函数359
18.2 非负可测函数的积分365
18.3 一般可测函数的积分372
18.4 Radon-Nikodym定理381
18.5 Nikodym度量空间:Vitali-Hahn-Saks定理388
第19章 一般的Lp空间:完备性、对偶性和弱收敛性394
19.1 Lp(X, )(1≤p≤∞)的完备性394
19.2 关于Lp(X, )(1≤p<∞)的对偶的Riesz表示定理399
19.3 关于L∞(X, )的对偶的Kantorovitch表示定理404
19.4 Lp(X, )(1<p<∞)的弱序列紧性407
19.5 L1(X, )的弱序列紧性:Dunford-Pettis定理409
第20章 特定测度的构造414
20.1 乘积测度:Fubini与Tonelli定理414
20.2 欧氏空间Rn上的Lebesgue测度424
20.3 累积分布函数与Borel测度437
20.4 度量空间上的Carathéodory外测度与Hausdorff测度441
第21章 测度与拓扑446
21.1 局部紧拓扑空间447
21.2 集合分离与函数延拓452
21.3 Radon测度的构造454
21.4 Cc(X)上的正线性泛函的表示:Riesz-Markov定理457
21.5 C(X)的对偶的表示:Riesz-Kakutani表示定理462
21.6 Baire测度的正则性470
第22章 不变测度477
22.1 拓扑群:一般线性群477
22.2 Kakutani不动点定理480
22.3 紧群上的不变Borel测度:von Neumann定理485
22.4 测度保持变换与遍历性:Bogoliubov-Krilov定理488
参考文献495
Contents
I Lebesgue Integration for Functions of a Single Real Variable 1
0 Preliminaries on Sets, Mappings, and Relations 3
UnionsandIntersectionsofSets ............................. 3
Mappings Between Sets............................. 4
Equivalence Relations, the Axiom of Choice, and Zorn’s Lemma . . . . . . . . . . 5
1 The Real Numbers: Sets, Sequences, and Functions 7
1.1 The Field, Positivity, and Completeness Axioms . . . . . . . . . . . . . . . . . 7
1.2 TheNaturalandRationalNumbers ........................ 11
1.3 CountableandUncountableSets ......................... 13
1.4 Open Sets, Closed Sets, and Borel Sets of Real Numbers . . . . . . . . . . . . 16
1.5 SequencesofRealNumbers ............................ 20
1.6 Continuous Real-Valued Functions of a Real Variable . . . . . . . . . . . . . 25
2 Lebesgue Measure 29
2.1 Introduction ..................................... 29
2.2 LebesgueOuterMeasure.............................. 31
2.3 The σ-AlgebraofLebesgueMeasurableSets .. .. .. .. .. ... .. .. . 34
2.4 Outer and Inner Approximation of Lebesgue Measurable Sets . . . . . . . . 40
2.5 Countable Additivity, Continuity, and the Borel-Cantelli Lemma . . . . . . . 43
2.6 NonmeasurableSets................................. 47
2.7 The Cantor Set and the Cantor-Lebesgue Function . . . . . . . . . . . . . . . 49
3 Lebesgue Measurable Functions 54
3.1 Sums,Products,andCompositions ........................ 54
3.2 Sequential Pointwise Limits and Simple Approximation . . . . . . . . . . . . 60
3.3 Littlewood’s Three Principles, Egoroff’s Theorem, and Lusin’s Theorem . . . 64
4 Lebesgue Integration 68
4.1 TheRiemannIntegral................................ 68
4.2 The Lebesgue Integral of a Bounded Measurable Function over a Set of FiniteMeasure.................................... 71
4.3 The Lebesgue Integral of a Measurable Nonnegative Function . . . . . . . . 79
4.4 TheGeneralLebesgueIntegral .......................... 85
4.5 Countable Additivity and Continuity of Integration . . . . . . . . . . . . . . . 90
4.6 Uniform Integrability: The Vitali Convergence Theorem . . . . . . . . . . . . 92
5 Lebesgue Integration: Further Topics 97
5.1 Uniform Integrability and Tightness: A General Vitali Convergence Theorem 97
5.2 ConvergenceinMeasure .............................. 99
5.3 Characterizations of Riemann and Lebesgue Integrability . . . . . . . . . . . 102
6 Differentiation and Integration 107
6.1 ContinuityofMonotoneFunctions ........................ 108
6.2 Differentiability of Monotone Functions: Lebesgue’s Theorem . . . . . . . . 109
6.3 Functions of Bounded Variation: Jordan’s Theorem . . . . . . . . . . . . . . 116
6.4 AbsolutelyContinuousFunctions ......................... 119
6.5 Integrating Derivatives: Differentiating Inde.nite Integrals . . . . . . . . . . 124
6.6 ConvexFunctions .................................. 130
7The Lp Spaces: Completeness and Approximation 135
7.1 NormedLinearSpaces ............................... 135
7.2 The Inequalities of Young, H older, and Minkowski . . . . . . 139
7.3 Lp IsComplete:TheRiesz-FischerTheorem . . . . . . . . . . . . . . . . . . 144
7.4 ApproximationandSeparability.......................... 150
8The Lp Spaces: Duality and Weak Convergence 155
8.1 The Riesz Representation for the Dual of Lp, 1 ≤ p < ∞ ........... 155
8.2 Weak Sequential Convergence in Lp ....................... 162
8.3 WeakSequentialCompactness........................... 171
8.4 TheMinimizationofConvexFunctionals. . . . . . . . . . . . . . . . . . . . . 174
II Abstract Spaces: Metric, Topological, Banach, and Hilbert Spaces 181
9 Metric Spaces: General Properties 183
9.1 ExamplesofMetricSpaces ............................. 183
9.2 Open Sets, Closed Sets, and Convergent Sequences . . . . . . . . . . . . . . . 187
9.3 ContinuousMappingsBetweenMetricSpaces . . . . . . . . . . . . . . . . . . 190
9.4 CompleteMetricSpaces .............................. 193
9.5 CompactMetricSpaces ............................... 197
9.6 SeparableMetricSpaces .............................. 204
10 Metric Spaces: Three Fundamental Theorems 206
10.1TheArzela-AscoliTheorem `............................ 206
10.2TheBaireCategoryTheorem ........................... 211
10.3TheBanachContractionPrinciple......................... 215
11 Topological Spaces: General Properties 222
11.1 OpenSets,ClosedSets,Bases,andSubbases. . . . . . . . . . . . . . . . . . . 222
11.2TheSeparationProperties ............................. 227
11.3CountabilityandSeparability ........................... 228
11.4 Continuous Mappings Between Topological Spaces . . . . . . . . . . . . . . . 230
Contents i.
11.5CompactTopologicalSpaces............................ 233
11.6ConnectedTopologicalSpaces........................... 237
12 Topological Spaces: Three Fundamental Theorems 239
12.1 Urysohn’s Lemma and the Tietze Extension Theorem . . . . . . . . . . . . . 239
12.2TheTychonoffProductTheorem ......................... 244
12.3TheStone-WeierstrassTheorem.......................... 247
13 Continuous Linear Operators Between Banach Spaces 253
13.1NormedLinearSpaces ............................... 253
13.2LinearOperators .................................. 256
13.3 Compactness Lost: In.nite Dimensional Normed Linear Spaces . . . . . . . . 259
13.4 TheOpenMappingandClosedGraphTheorems .. .. .. .. ... .. .. . 263
13.5TheUniformBoundednessPrinciple ....................... 268
14 Duality for Normed Linear Spaces 271
14.1 Linear Functionals, Bounded Linear Functionals, and Weak Topologies . . . 271
14.2TheHahn-BanachTheorem ............................ 277
14.3 Re.exive Banach Spaces and Weak Sequential Convergence . . . . . . . . . 282
14.4 LocallyConvexTopologicalVectorSpaces. . . . . . . . . . . . . . . . . . . . 286
14.5 The Separation of Convex Sets and Mazur’s Theorem . . . . . . . . . . . . . 290
14.6TheKrein-MilmanTheorem. ........................... 295
15 Compactness Regained: The Weak Topology 298
15.1 Alaoglu’sExtensionofHelley’sTheorem .. .. .. .. .. .. ... .. .. . 298
15.2 Re.exivity and Weak Compactness: Kakutani’s Theorem . . . . . . . . . . . 300
15.3 Compactness and Weak Sequential Compactness: The Eberlein-ˇSmulian Theorem ........................... 302
15.4MetrizabilityofWeakTopologies ......................... 305
16 Continuous Linear Operators on Hilbert Spaces 308
16.1TheInnerProductandOrthogonality....................... 309
16.2 The Dual Space and Weak Sequential Convergence . . . . . . . . . . . . . . 313
16.3 Bessel’sInequalityandOrthonormalBases . . . . . . . . . . . . . . . . . . . 316
16.4 AdjointsandSymmetryforLinearOperators . . . . . . . . . . . . . . . . . . 319
16.5CompactOperators ................................. 324
16.6TheHilbert-SchmidtTheorem ........................... 326
16.7 The Riesz-Schauder Theorem: Characterization of Fredholm Operators . . . 329
III Measure and Integration: General Theory 335
17 General Measure Spaces: Their Properties and Construction 337
17.1MeasuresandMeasurableSets........................... 337
17.2 Signed Measures: The Hahn and Jordan Decompositions . . . . . . . . . . . 342
17.3 The Carath′346
eodory Measure Induced by an Outer Measure . . . . . . . . . . .
17.4TheConstructionofOuterMeasures ....................... 349
17.5 The Carath′eodory-Hahn Theorem: The Extension of a Premeasure to a Measure ....................................... 352
18 Integration Over General Measure Spaces 359
18.1MeasurableFunctions................................ 359
18.2 Integration of Nonnegative Measurable Functions . . . . . . . . . . . . . . . 365
18.3 Integration of General Measurable Functions . . . . . . . . . . . . . . . . . . 372
18.4TheRadon-NikodymTheorem .......................... 381
18.5 The Nikodym Metric Space: The Vitali–Hahn–Saks Theorem . . . . . . . . . 388
19 General LP Spaces: Completeness, Duality, and Weak Convergence 394
19.1 The Completeness of Lp.X, μ., 1 ≤p ≤∞ ................... 394
19.2 The Riesz Representation Theorem for the Dual of Lp.X, μ., 1 ≤p ≤∞ . . 399
19.3 The Kantorovitch Representation Theorem for the Dual of L∞.X, μ. .... 404
19.4 Weak Sequential Compactness in Lp.X, μ., 1 <p< 1............. 407
19.5 Weak Sequential Compactness in L1.X, μ. : The Dunford-Pettis Theorem . .. 409
20 The Construction of Particular Measures 414
20.1 Product Measures: The Theorems of Fubini and Tonelli . . . . . . . . . . . . 414
20.2 Lebesgue Measure on Euclidean Space Rn .................... 424
20.3 Cumulative Distribution Functions and Borel Measures on R ......... 437
20.4 Caratheodory Outer Measures and Hausdor ′ff Measures on a Metric Space 441
21 Measure and Topology 446
21.1LocallyCompactTopologicalSpaces ....................... 447
21.2 SeparatingSetsandExtendingFunctions. . . . . . . . . . . . . . . . . . . . . 452
21.3TheConstructionofRadonMeasures....................... 454
21.4 The Representation of Positive Linear Functionals on Cc.X.:The Riesz-MarkovTheorem .................... 457
21.5 The Riesz Representation Theorem for the Dual of C.X. ........... 462
21.6 RegularityPropertiesofBaireMeasures . . . . . . . . . . . . . . . . . . . . . 470
22 Invariant Measures 477
22.1 Topological Groups: The General Linear Group . . . . . . . . . . . . . . . . 477
22.2Kakutani’sFixedPointTheorem ......................... 480
22.3 Invariant Borel Measures on Compact Groups: von Neumann’s Theorem . . 485
22.4 Measure Preserving Transformations and Ergodicity: The Bogoliubov-Krilov Theorem .............. 488
Bibliography 495